Wissenschafter
Mathematik und Signalverarbeitung in der Akustik

Tel. +43 1 51581-2526
Email:  JoseLuis.Romero(at)oeaw.ac.at

Bildung


José Luis Romero is assistant professor at the Faculty of Mathematics of the University of Vienna, and also an associate member of ARI. He was awarded a PhD in Mathematics from the University of Buenos Aires (2011) under the supervision of Ursula Molter. José Luis Romero has received several research fellowships including Fulbright (US Department of State) and Marie Curie (European Commission). He has also received the best paper award of the OEAW (2018) and an FWF START award (2019). In 2020 he was elected young member of the Austrian Academy of Sciences (Junge Akademie der OEAW).

Derzeitige Forschung


His research interests include harmonic analysis, time-frequency and time-scale analysis, signal processing and acoustics, statistical estimation, stochastic point processes, and mathematical physics. Further information. https://sites.google.com/site/jlromeroresearch/

Publikationen

Publikationen

  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2020) Sharp Results on Sampling with Derivatives in Shift-Invariant Spaces and Multi-Window Gabor Frames. Constructive Approximation, Bd. 51, S. 1-25.
  • Gröchenig, K.; Romero, J. L,; Rottensteiner, D.; van Velthoven, J. T. (2020) Balian-Low type theorems on homogeneous groups. Analysis Mathematica.
  • Andén, J.; Romero, J. L. (2020) Multitaper Estimation on Arbitrary Domains. SIAM J. Imaging Sci., Bd. 13, S. 1565-1594.
  • Adcock, B.; Gataric, M.; Romero, J.L. (2019, online: 2017) Computing reconstructions from nonuniform Fourier samples: Universality of stability barriers and stable sampling rates. Applied and Computational Harmonic Analysis, Bd. 46, S. 226-249.
  • Abreu, L. D.; Gröchenig, K.; Romero, J. L. (2019) Harmonic analysis in phase space and finite Weyl–Heisenberg ensembles. Journal of Statistical Physics,, Bd. 174, S. 1104-1136.
  • Koliander, G.; Abreu, L. D.; Haimi, A.; Romero, J. L. (2019) Filtering the continuous wavelet transform using hyperbolic triangulations., Proc. Int. Conf. Samp. Theory and Appl. (SampTA-19); Bordeaux, France.
  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2018) Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Inventiones Mathematicae, Bd. 211, S. 1119-1148.
  • Abreu, L. D.; Romero, J. L. (2017) Multitaper spectral estimation and off-grid compressive sensing: MSE estimates., Proceedings of the SampTA (2017); Tallinn, S. 188-191.
  • Abreu, L. D.; Pereira, J. M.; Romero, J. L.; Torquato, S. (2017) The Weyl-Heisenberg ensemble: Statistical mechanics meets time-frequency analysis., Proceedings of the SampTA (2017); Tallinn, S. 199-202.
  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2017) Sharp Sampling Theorems in Shift-invariant Spaces., Proceedings of the SampTA (2017); Tallinn, S. 22-25.
  • Führ, H.; Gröchenig, K.; Haimi, A.; Klotz, A.; Romero, J. L. (2017) Density of sampling and interpolation in reproducing kernel Hilbert spaces. Journal of the London Mathematical Society.
  • Abreu, L. D.; Pereira, J. M.; Romero, J.L.; Torquato, S. (2017) The Weyl-Heisenberg ensemble: hyperuniformity and higher Landau levels. Journal of Statistical Mechanics: Theory and Experiment, Bd. 2017, S. 043103.
  • Abreu, L. D.; Romero, J. L. (2017) MSE estimates for multitaper spectral estimation and off-grid compressive sensing. IEEE Transactions on Information Theory, Bd. 63/12, S. 7770-7776.
  • Abreu, L. D.; Pereira, J. M.; Romero, J. L. (2017) Sharp rates of convergence for accumulated spectrograms. Inverse Problems, Bd. 33, S. 115008.
  • Berra, M.; V. de Hoop, M.; Romero, J. L. A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem.
  • Gröchenig, K.; Haimi, A.; Romero, J. L.; Ortega-Cerda, J. Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions. Journal of Functional Analysis, S. 33.
  • Escudero, L. A.; Haimi, A.; Romero, J. L. Multiple sampling and interpolation in weighted Fock spaces of entire functions. Complex Analysis and Operator Theory.
  • Jaming, P.; Negreira, F.; Romero, J. L. The Nyquist sampling rate for spiraling curves. Applied and Computational Harmonic Analysis.
  • 1