Mathematics and Signal Processing in Acoustics
Research Scientist

Tel. +43 1 51581-2526
Email:  JoseLuis.Romero(at)oeaw.ac.at

Academic background


José Luis Romero was awarded a PhD in Mathematics from the University of Buenos Aires (2011) and a Habilitation in Mathematics (venia docendi) from the University of Vienna (2016). He has received several research fellowships including Fulbright (US Department of State), Lise Meitner (Austrian Science Fund) and Marie Curie (European Commission).

Current research


His research interests include harmonic analysis, time-frequency and time-scale analysis, signal processing, statistical estimation, stochastic point processes, and mathematical physics.

Further information: homepage

Publications

Publications

  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2020) Sharp Results on Sampling with Derivatives in Shift-Invariant Spaces and Multi-Window Gabor Frames. Constructive Approximation, Bd. 51, S. 1-25.
  • Gröchenig, K.; Romero, J. L,; Rottensteiner, D.; van Velthoven, J. T. (2020) Balian-Low type theorems on homogeneous groups. Analysis Mathematica.
  • Andén, J.; Romero, J. L. (2020) Multitaper Estimation on Arbitrary Domains. SIAM J. Imaging Sci., Bd. 13, S. 1565-1594.
  • Jaming, P.; Negreira, F.; Romero, J. L. (online: 2020) The Nyquist sampling rate for spiraling curves. Applied and Computational Harmonic Analysis.
  • Adcock, B.; Gataric, M.; Romero, J.L. (2019, online: 2017) Computing reconstructions from nonuniform Fourier samples: Universality of stability barriers and stable sampling rates. Applied and Computational Harmonic Analysis, Bd. 46, S. 226-249.
  • Abreu, L. D.; Gröchenig, K.; Romero, J. L. (2019) Harmonic analysis in phase space and finite Weyl–Heisenberg ensembles. Journal of Statistical Physics,, Bd. 174, S. 1104-1136.
  • Koliander, G.; Abreu, L. D.; Haimi, A.; Romero, J. L. (2019) Filtering the continuous wavelet transform using hyperbolic triangulations., Proc. Int. Conf. Samp. Theory and Appl. (SampTA-19); Bordeaux, France.
  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2018) Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Inventiones Mathematicae, Bd. 211, S. 1119-1148.
  • Abreu, L. D.; Romero, J. L. (2017) Multitaper spectral estimation and off-grid compressive sensing: MSE estimates., Proceedings of the SampTA (2017); Tallinn, S. 188-191.
  • Abreu, L. D.; Pereira, J. M.; Romero, J. L.; Torquato, S. (2017) The Weyl-Heisenberg ensemble: Statistical mechanics meets time-frequency analysis., Proceedings of the SampTA (2017); Tallinn, S. 199-202.
  • Gröchenig, K.; Romero, J. L.; Stöckler, J. (2017) Sharp Sampling Theorems in Shift-invariant Spaces., Proceedings of the SampTA (2017); Tallinn, S. 22-25.
  • Führ, H.; Gröchenig, K.; Haimi, A.; Klotz, A.; Romero, J. L. (2017) Density of sampling and interpolation in reproducing kernel Hilbert spaces. Journal of the London Mathematical Society.
  • Abreu, L. D.; Pereira, J. M.; Romero, J.L.; Torquato, S. (2017) The Weyl-Heisenberg ensemble: hyperuniformity and higher Landau levels. Journal of Statistical Mechanics: Theory and Experiment, Bd. 2017, S. 043103.
  • Abreu, L. D.; Romero, J. L. (2017) MSE estimates for multitaper spectral estimation and off-grid compressive sensing. IEEE Transactions on Information Theory, Bd. 63/12, S. 7770-7776.
  • Abreu, L. D.; Pereira, J. M.; Romero, J. L. (2017) Sharp rates of convergence for accumulated spectrograms. Inverse Problems, Bd. 33, S. 115008.
  • Berra, M.; V. de Hoop, M.; Romero, J. L. A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem.
  • Gröchenig, K.; Haimi, A.; Romero, J. L.; Ortega-Cerda, J. Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions. Journal of Functional Analysis, S. 33.
  • Escudero, L. A.; Haimi, A.; Romero, J. L. Multiple sampling and interpolation in weighted Fock spaces of entire functions. Complex Analysis and Operator Theory.
  • 1