Mathematics and Signal Processing in Acoustics
Research Scientist

Tel. +43 1 51581-2526
Email:  JoseLuis.Romero(at)

Academic background

José Luis Romero is assistant professor at the Faculty of Mathematics of the University of Vienna, and also an associate member of ARI. He was awarded a PhD in Mathematics from the University of Buenos Aires (2011) under the supervision of Ursula Molter. José Luis Romero has received several research fellowships including Fulbright (US Department of State) and Marie Curie (European Commission). He has also received the best paper award of the OEAW (2018) and an FWF START award (2019). In 2020 he was elected young member of the Austrian Academy of Sciences (Junge Akademie der OEAW).

Current research

His research interests include harmonic analysis, time-frequency and time-scale analysis, signal processing and acoustics, statistical estimation, stochastic point processes, and mathematical physics. Further information.



  • Nicola F.; Romero J. L.; Trapasso S. I. (2022) On the existence of optimizers for time–frequency concentration problems. Calculus of Variations and Partial Differential Equations, Bd. 62/21.
  • Escudero L. A.; Feldheim N.; Koliander G.; Romero J. L. (2022) Efficient computation of the zeros of the Bargmann transform under additive white noise. Foundations of Computational Mathematics.
  • Romero J. L.; van Velthoven J. T.; Voigtlaender F. (2022) Invertibility of Frame Operators on Besov-Type Decomposition Spaces. J. Geom. Anal., Bd. 32, S. Paper No. 149.
  • Romero J.L.; van Velthoven J.T. (2022) The density theorem for discrete series representations restricted to lattices. Expositiones Mathematicae, Bd. 40/2, S. 265-301.
  • Romero J.L.; Speckbacher M. (2022) Spectral-norm risk rates for multi-taper estimation of Gaussian processes. Journal of Nonparametric Statistics, Bd. 34/2, S. 448-464.
  • Haimi A.; Koliander G.; Romero J.L. (2022) Zeros of Gaussian Weyl-Heisenberg Functions and Hyperuniformity of Charge. Journal of Statistical Physics, Bd. 187/3, S. Paper Nr. 22.
  • Ameur Y.; Romero J.L. (2022) The planar low temperature coulomb gas: separation and equidistribution. Revista Matemática Iberoamericana.
  • Berra M.; de Hoop M. V.; Romero J. L. (2022) A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem. Journal of Differential Equations, Bd. 309, S. 949-993.
  • Romero J. L.; van Velthoven J. T.; Voigtlaender F. (2021) On dual molecules and convolution-dominated operators. Journal of Functional Analysis, Bd. 280, S. 108963.
  • Jaming Ph.; Negreira F.; Romero J. L. (2021) The Nyquist sampling rate for spiraling curves. Applied and Computational Harmonic Analysis, Bd. 52, S. 198-230.
  • Escudero L. A.; Haimi A.; Romero J. L. (2020) Multiple sampling and interpolation in weighted Fock spaces of entire functions. Complex Analysis and Operator Theory.
  • Andén J.; Romero J. L. (2020) Multitaper Estimation on Arbitrary Domains. SIAM J. Imaging Sci., Bd. 13.3, S. 1565-1594.
  • Gröchenig K.; Romero J. L.; Rottensteiner D.; van Velthoven J. T. (2020) Balian-Low type theorems on homogeneous groups. Analysis Mathematica, S. 483-515.
  • Gröchenig K.; Romero J. L.; Stöckler J. (2020) Sharp Results on Sampling with Derivatives in Shift-Invariant Spaces and Multi-Window Gabor Frames. Constructive Approximation, Bd. 51, S. 1-25.
  • Adcock B.; Gataric M.; Romero J.L. (2019) Computing reconstructions from nonuniform Fourier samples: Universality of stability barriers and stable sampling rates. Applied and Computational Harmonic Analysis, Bd. 46, S. 226-249.
  • Koliander G.; Abreu L. D.; Haimi A.; Romero J. L. (2019) Filtering the continuous wavelet transform using hyperbolic triangulations. Proc. Int. Conf. Samp. Theory and Appl. (SampTA-19). Bordeaux, France.
  • Abreu L. D.; Gröchenig K.; Romero J. L. (2019) Harmonic analysis in phase space and finite Weyl-Heisenberg ensembles. Journal of Statistical Physics,, Bd. 174, S. 1104-1136.
  • Gröchenig K.; Haimi A.; Romero J. L.; Ortega-Cerda J. (2019) Strict density inequalities for sampling and interpolation in weighted spaces of holomorphic functions. Journal of Functional Analysis, S. 33.
  • Gröchenig K.; Romero J. L.; Stöckler J. (2018) Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Inventiones Mathematicae, Bd. 211, S. 1119-1148.
  • Abreu L. D.; Pereira J. M.; Romero J. L. (2017) Sharp rates of convergence for accumulated spectrograms. Inverse Problems, Bd. 33, S. 115008.