
Wissenschafter
Fachbereich Mathematik
Frame Theory and its Implementation
Tel. +43 1 51581-2554
Email: michael.speckbacher(at)oeaw.ac.at
Bildung
Michael Speckbacher studierte Mathematik an der TU Müchen. Sein Doktoratsstudium absolvierte er am Institut für Schallforschung und schloss dieses im September 2017 ab. Nach Stationen an der Université de Bordeaux, der Katholischen Universität Eichstätt-Ingolstadt und der Universität Wien, ist er seit Juni 2024 wieder zurück am Institut für Schallforschung.
Derzeitige Forschung
Michael Speckbacher leitet das Forschungsprojekt "LIOON - Localization (of) Operators and Operator Reconstruction", welches sich mit der Lokalisation und Rekonstruktion von Operatoren beschäftigt. Seine Forschungsinteressen reichen von Zeit-Frequenz Analysis, Frame Theorie, und Lokalisierungsoperatoren, bis hin zu statistischen Methoden in der Operatorrekonstruktion.
Projekte
Publikationen
ISF Publikationen
- Abreu L. D.; Speckbacher M. (2025) Donoho-Logan large sieve principles for the wavelet transform. Applied and Computational Harmonic Analysis, Bd. 74, S. 101709.
- Romero J.L.; Speckbacher M. (2024) Estimation of Binary Time-Frequency Masks from Ambient Noise. SIAM Journal on Mathematical Analysis, Bd. 56/3, S. 3559-3587.
- Marceca F.; Romero J.L.; Speckbacher M. (2024) Eigenvalue estimates for Fourier concentration operators on two domains. Archive for Rational Mechanics and Analysis, Bd. 248, S. 35.
- Abreu L.D.; Balazs P.; Holighaus N.; Luef F.; Speckbacher M. (2024) Time-frequency analysis on flat tori and Gabor frames in finite dimensions. Applied and Computational Harmonic Analysis, Bd. 69, S. 101622.
- Balazs P.; Freeman D.; Popescu R.; Speckbacher M. (2024) Quantitative bounds for unconditional pairs of frames. Journal of Mathematical Analysis and Applications, Bd. 531/1/2, S. 127874.
- Bytchenkoff D.; Speckbacher M.; Balazs P. (2023) Outer Kernel Theorem for Co-orbit Spaces of Localised Frames. 14th International Conference on Sampling Theory and Applications. Yale.
- Romero J.L.; Speckbacher M. (2022) Spectral-norm risk rates for multi-taper estimation of Gaussian processes. Journal of Nonparametric Statistics, Bd. 34/2, S. 448-464.
- Abreu L. D.; Speckbacher M. (2021) Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces. Bulletin des Sciences Mathematiques, Bd. 103032.
- Jaming P.; Speckbacher M. (2021) Concentration estimates for finite expansions of spherical harmonics on two-point homogeneous spaces via the large sieve principle. Sampling, Theory, Signal Processing, and Data Analysis, Bd. 19.
- Speckbacher M.; Balazs P. (2020) Frames, their relatives and reproducing kernel Hilbert spaces. J. Phys. A: Math. Theor., Bd. 53, S. 015204.
- Speckbacher M.; Hrycak T. (2020) Concentration estimates for band-limited spherical harmonics expansions via the large sieve principle. Journal of Fourier Analysis and Applications, Bd. 26, S. 38.
- Balazs P.; Gröchenig K.; Speckbacher M. (2019) Kernel Theorems in Coorbit Theory. Transactions of the American Mathematical Society.
- Speckbacher M.; Abreu L. D. (2019) Deterministic guarantees for L1-reconstruction: a large sieve approach with geometric flexibility. IEEE Proceedings SampTA 2019.
- Speckbacher M. (2017) Reproducing Pairs and Flexible Time-Frequency Representations. . Universität Wien, .
- Speckbacher M.; Balazs P. (2017) Reproducing pairs and Gabor systems at critical density. Journal of Mathematical Analysis and Applications, Bd. 455, S. 1072-1087.
- Speckbacher M.; Bayer D.; Dahlke S.; Balazs P. (2017) The $alpha$-modulation transform: admissibility, coorbit theory and frames of compactly supported functions. Monatshefte fÜr Mathematik, Bd. 184, S. 133-169.
- Antoine J.-P.; Speckbacher M.; Trapani C. (2017) Reproducing pairs of measurable functions. Acta Applicandae Mathematicae, Bd. 150, S. 81-101.
- Abreu L. D.; Speckbacher M. (2017) A planar large sieve and sparsity of time-frequency representations. Proceedings of the SampTA 2017. Tallinn S. 283-287.
- Speckbacher M.; Balazs P. (2015) Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. Journal of Physcis A: Mathematical and Theoretical, Bd. 48, S. 395201.
- Speckbacher M.; Balazs P. (2014) The continuous nonstationary Gabor transform on LCA groups with applications to representations of the affine Weyl-Heisenberg group. .
- Speckbacher M. (2013) Time-Frequency Representation adapted to Perception. . Technische Universität München, .
Weitere Publikationen
- Baranov, A.; Jaming, P.; Kellay, K.; Speckbacher, M. (2024) Oversampling and Donoho-Logan type theorems in model spaces. Annales Fennici Mathematici, Bd. 49/1
- Gröchenig, K.; Romero, J.L.; Speckbacher, M. (2023) Lipschitz continuity of spectra of pseudodifferential operators in a weighted Sjöstrand class and Gabor frame bounds. Journal of Spectral Theory, Bd. 13/3
- Speckbacher, M. (2022) Sampling trajectories for the short-time Fourier transform. Journal of Fourier Analysis and Applications, Bd. 28/6
- Abreu, L.D.; Speckbacher, M. (2022) Affine density, von Neumann dimension and a problem by Perelomov. Advances in Mathematics, Bd. 408
- Jaming, P.; Speckbacher, M. (2020) Almost everywhere convergence of prolate spheroidal series. Illinois Journal of Mathematics, Bd. 65
- Jaming, P.; Speckbacher, M. (2019) Planar sampling sets for the short-time Fourier transform. Constructive Approximation, Bd. 53