Research Scientist
Physical and Computational Acoustics

Tel. +43 1 51581-2518

Scientific IDs:
ORCID: 0000-0003-3772-0514

Academic Background

Wolfgang Kreuzer studied Technical Mathematics at the Technical University of Vienna. After finishing his Ph.D at the Technical University of Vienna (Diploma 1996: Modelling the Cortical Organ with finite Elements, PhD Thesis: Computer aided analysis of the iterative defect correction with respect to stiff differential equations), he worked at the Institute for Applied and Numerical Mathematics at the TU-Vienna.

From 2004 to 2005, he worked as project employee at a joint project of the Institute for Distributed and Multimedia Systems at the University of Vienna and the Institute for Theoretical Chemistry. Since 2004, he has works  at the Acoustics Research Institute of the Austrian Academy of Sciences, where he joined the Physical and Compuational Acoustics group

Current Research

The main focus of his current work lies in applied and numerical mathematics, in particular 

  • Boundary Element Methods for the Helmholtz Equation
  • Development of Numerical Algorithms
  • Numerical Simulation of HRTFs
  • Propagation of Noise and Vibrations
  • Frames in Acoustics: BIOTOP



  • Kreuzer W.; Pollack K.; Majdak P.; Brinkmann F. (2022) Mesh2HRTF / NumCalc: An Open-Source Project to CalculateHRTFs and wave scattering in 3D. Proceedings of the Euroregio/BNAM 2022. Aalborg, Denmark.
  • Kreuzer W. (2022) Numerical simulation of sound propagation in and around ducts using thin boundary elements. .
  • Pollack K.; Kreuzer W.; Majdak P. (2022) Modern Acquisition of Personalised Head - Related Transfer Functions: An OverviewAdvances in Fundamental and Applied Research on Spatial Audio (B. Katz and Majdak, P., eds.). IntechOpen, Rijeka.
  • Kasess C. H.; Maly T.; Kreuzer W. (2022) Modeling of multiple reflections between noise barriers and trains using the boundary element method. BNAM/Euregio.
  • Kasess C. H.; Maly T.; Balazs P.; Kreuzer W. (2021) Time-variant signal manipulation using frame multipliers. Euronoise, Madeira. Madeira S. 673-682.
  • Balazs P.; Kasess C.; Kreuzer W.; Maly T.; Průša Z.; Jaillet F. (2021) Anwendung von Rahmen-Multiplikatoren für die Extraktion von Kurvenquietschen von Zugsaufnahmen. e & i Elektrotechnik und Informationstechnik, Bd. 138, S. 206-211.
  • Waubke H.; Kreuzer W.; Schmutzhard S.; Hrycak T. (2020) Finite elements in Fourier transformed domain for the simulation of trains in tunnels. Proceedings of Forum Acusticum 2020, Lyon. Lyon S. 3309-3311.
  • Kreuzer W. (2019) Using B-spline frames to represent solutions of acoustics scattering problems. Journal of Computational and Applied Mathematics, Bd. 351, S. 331-343.
  • Kreuzer W.; Weber V. (2019) BEM-simulation of tubes using thin elements. Proceedings in Applied Mathematics & Mechanics. Wiley, .
  • Majdak P.; Kreuzer W.; Baumgartner R.; Mihocic M.; Reichinger A. (2019) Method for determining listener-specific head-related transfer functions. .
  • Kreuzer W. (2019) Using B-spline frames to represent solutions of acoustics scattering problems. 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. Book of Abstracts. (M. Kaltenbacher, Melenk, J. M., and Nannen, L., eds.).
  • Kreuzer W.; Weber V. (2019) BEM Simulation of tube acoustics using thin elements. Proceedings of the 23rd International Congress on Acoustics. Aachen.
  • Brand J.; Kreuzer W.; Gräf M.; Ehler M. (2017) Vergleich verschiedener Abtastmethoden auf der Kugeloberfläche. Fortschritte in der Akustik DAGA. Kiel S. 1291-1294.
  • Kreuzer W.; Brand J. (2017) B-Splines und Frames. Fortschritte in der Akustik (DAGA 2017). Kiel S. 711-714.
  • Kasess C. H.; Kreuzer W.; Waubke H. (2016) Deriving correction functions to model the efficiency of noise barriers with complex shapes using boundary element simulations. Applied Acoustics, Bd. 102, S. 88 - 99.
  • Kreuzer W.; Hrycak T.; Weimar M. (2016) Wavelet und Frame Techniken für BEM in der Akustik. Fortschritte in der Akustik, DAGA 2016. Aachen S. 855-858.
  • Kasess C. H.; Waubke H.; Wehr R.; Conter M.; Kirisits C.; Ziegelwanger H.; et al. (2016) Effects of source type, position, and train structure on BEM calculations. Inproceedings of the Internoise 2016 (W. Kropp von Estorff, ed.). Hamburg S. 4387-4396.
  • Waubke H.; Kreuzer W. (2016) Kopplung von finiten Elementen mit Randelementen im Orts-Wellenzahlraum zur Simulation von Tunnelstrukturen. Fortschritte in der Akustik DAGA 2016. Aachen S. 851-854.
  • Ziegelwanger H; Majdak P. (2016) A priori mesh grading for the numerical calculation of the head-related transfer functions. Applied Acoustics, Bd. 114, S. 99 - 110.
  • Waubke H.; Kreuzer W.; Kasess C. H. (2016) Boundary element method and finite element method in 2.5D. Proceedings of the 7th AAAA Congress on Sound and Vibration. Ljubljana S. CD-ROM.