Objective

Methods to predict the propagation of vibrations in soil are relatively undeveloped. Reasons for this include the complexity of the wave propagation in soil and the insufficient knowledge of material parameters. During this project a method was developed to simulate the propagation of vibrations that are caused by a load at the base of a tunnel.

Method

When dealing with the model of a tunnel in a semi-infinite domain like soil, the boundary element method (BEM) seems to be an appropriate tool. Unfortunately it cannot be applied directly to layered orthotropic media, because of the lack of a closed form of the Greens function, which is essential for BEM. But by transforming the whole system into the Fourier domain with respect to space and time, it is possible to numerically construct an approximation for this function on a predefined grid. With this approximation the boundary integral equation, that describes the propagation of waves caused by a vibrating load at the base of a tunnel can be solved.

Application

Models that can help to predict the propagation of vibrations inside soil layers are of great interest in earthquake sciences or when constructing railway lines and tunnels.

Funding: FFG (Call ISB2)

Principal Investigator: Holger Waubke

Duration: January 2005 - April 2007

Related Project: RailVib

Funding

FFG