Research Associate and Project Group Leader
Psychoacoustics and Experimental Audiology

Tel. +43 1 51581-2527
Email: robert.baumgartner [at] oeaw.ac.at

Scientific IDs:
Orcid: orcid.org/0000-0003-0899-4903
ResearcherID: N-4858-2015 (http://www.researcherid.com/rid/N-4858-2015)
Google scholar: https://scholar.google.at/citations?user=bUQTvRIAAAAJ&hl=de
ResearchGate: https://www.researchgate.net/profile/Robert_Baumgartner5
Publons: publons.com/a/1404883/

Academic Background


  • 2010: BSc in Electrical Engineering and Audio Engineering at the University of Technology Graz (TUG) and the University of Music and Performing Arts Graz (KUG)
  • 2012: MSc (distinction) in Electrical Engineering and Audio Engineering with focus on acoustics and recording technology at TUG and KUG. Master thesis (conducted at ARI) honored by Student Award of the German Acoustics Association (DEGA)
  • 2015: PhD (distinction) in Sound and Music Computing at KUG, conducted at the ARI. Thesis honored by Award of Excellence from the Austrian ministry (BMWFW) for Austrians best dissertations
  • 2019: Lothar-Cremer Award of the German Acoustical Society for outstanding achievements of young scientists

Current Research


My research aims at understanding auditory cognition in simple and complex environments with the long-term vision to improve future hearing technologies, diagnostics, and therapies. To this end, I combine computational modeling with psychoacoustics and cognitive neuroscience methods while being committed to open and reproducible research allowing the scientific community to be fair and efficient. So far, most of my previous work focused on spatial hearing and revealed 1) how spectral cues induced by the acoustic filtering of incoming sounds by the pinnae, head, and body are processed by the normal and impaired auditory system in order to localize sounds (Baumgartner et al., 2014, 2016), 2) that perceptual biases for looming sonic motion are not cue-specific and originate early during cortical processing (Baumgartner et al., 2017), and 3) that the entirety of auditory spatial cues needs to be consistent in order to effectively engage selective attention networks (Deng et al., 2019).

In this short online lecture I explain further details about my current research:  ÖAW Science Bites: Gefahr – wie wir sie hören. (German only)