29.02.2016

Three "twisted" photons in three dimensions

Experiment opens door for quantum encryption

[Translate to English:] Künstlerische Darstellung der verdrehten Photonenverschränkung (Copyright: Faculty of Physics, University of Vienna).
[Translate to English:] Zu den Pressebildern

Researchers at the Institute of Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three particles of light in a high-dimensional quantum property related to the "twist" of their wavefront structure. Just like Schrödinger's famous cat that is simultaneously dead and alive, all previous demonstrations of multi-particle entanglement have been with quantum objects in two discrete levels, or dimensions. The twisted photons used in the Vienna experiment have no such limit to their dimensionality, and can simultaneously exist in three or more quantum states. The three-photon entangled state created by the Vienna group breaks this previous record of dimensionality, and brings to light a new form of asymmetric entanglement that has not been observed before. The results from their experiment appear in the journal Nature Photonics.

Entanglement is a counterintuitive property of quantum physics that has long puzzled scientists and philosophers alike. Entangled quanta of light seem to exert an influence on each other, irrespective of how much distance is between them. Consider for example a metaphorical quantum ice dancer, who has the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously. A pair of entangled ice-dancers whirling away from each other would then have perfectly correlated directions of rotation: If the first dancer twirls clockwise then so does her partner, even if skating in ice rinks on two different continents. "The entangled photons in our experiment can be illustrated by not two, but three such ice dancers, dancing a perfectly synchronized quantum mechanical ballet," explains Mehul Malik, the first author of the paper. "Their dance is also a bit more complex, with two of the dancers performing yet another correlated movement in addition to pirouetting. This type of asymmetric quantum entanglement has been predicted before on paper, but we are the first to actually create it in the lab."

From fundamentals to applications: Layered quantum cryptography

The scientists created their three-photon entangled state by using yet another quantum mechanical trick: they combined two pairs of high-dimensionally entangled photons in such a manner that it became impossible to ascertain where a particular photon came from. Besides serving as a test bed for studying many fundamental concepts in quantum mechanics, multi-photon entangled states such as these have applications ranging from quantum computing to quantum encryption. Along these lines, the authors of this study have developed a new type of quantum cryptographic protocol using their state that allows different layers of information to be shared asymmetrically among multiple parties with unconditional security. "The experiment opens the door for a future quantum Internet with more than two partners and it allows them to communicate more than one bit per photon," says Anton Zeilinger. Many technical challenges remain before such a quantum communication protocol becomes a practical reality. However, given the rapid progress in quantum technologies today, it is only a matter of time before this type of entanglement finds a place in the quantum networks of the future.

This research was supported by the European Commission, the European Research Council (ERC) and the Austrian Science Fund (FWF).

University of Vienna

The University of Vienna, founded in 1365, is one of the oldest and largest universities in Europe. About 9,500 employees, 6,700 of who are academic employees, work at 19 faculties and centres. This makes the University of Vienna Austria’s largest research and education institution. About 92,000 national and international students are currently enrolled at the University of Vienna. With more than 180 degree programmes, the University offers the most diverse range of studies in Austria. The University of Vienna is also a major provider of continuing education. In 2015, the Alma Mater Rudolphina Vindobonensis celebrated its 650th Anniversary. www.univie.ac.at

Austrian Academy of Sciences

The Austrian Academy of Sciences (OeAW) is Austria’s central non-university research and science institution. Its statutory mission is to “promote science in every way”. Founded in 1847 as a learned society, today the OeAW has over 770 members and 1,450 employees dedicated to innovative basic research, interdisciplinary exchange of knowledge and the dissemination of new insights with the aim of contributing to progress in science and society as a whole. www.oeaw.ac.at

 

 

Publication in "Nature Photonics"

Multi-Photon

Entanglement in High Dimensions: Mehul Malik, Manuel Erhard, Marcus

Huber, Mario Krenn, Robert Fickler, Anton Zeilinger. Nature Photonics,

2016

http://dx.doi.org/10.1038/nphoton.2016.12

Preprint: http://arxiv.org/abs/1509.02561

Further information: http://www.iqoqi-vienna.at/

 

Scientific Contact

Dr. Mehul Malik
Quantum Optics, Quantum Nanophysics & Quantum Information
Faculty of Physics, University of Vienna
Institute for Quantum Optics and Quantum Information (ÖAW)
1090 Vienna, Boltzmanngasse 3
M +43-660-2851759
mehul.malik@univie.ac.at

 

Press Contact

Mag. Alexandra Frey
Press office, University of Vienna
Research and Teaching
1010 Vienna, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey(at)univie.ac.at


Dipl.-Soz. Sven Hartwig
Head of Public Relations & Communication
Austrian Academy of Sciences
1010 Vienna, Dr. Ignaz Seipel-Platz 2
T +43 1 51581-1331
sven.hartwig(at)oeaw.ac.at