Assoc. Prof. Dr. Daniel Kiener

Function: Group Leader
Room: 412
Phone: +43 (0) 3842-804-412
E-Mail: daniel.kiener(at)unileoben.ac.at

 

Research

Micro- and Nanomechanics and Micro- and Nanostructure Characterization

When the material grain size or the sample volume itself are reduced to the micron- and sub-micron regime, significant size effects on the mechanical properties arise due to the increased contribution of surfaces and interfaces. We aim to derive a mechanistic understanding of the interplay between sample or microstructure size, the presence of individual microstructural elements such as interfaces, grain boundaries or dislocations, and the resulting global material properties. This is achieved by a combination of sophisticated methods such as highly localized and miniaturized quantitative experiments performed within high-resolution electron microscopy techniques, temperature- and rate dependent thermo-mechanical microstructure analysis, and advanced nanoindentation techniques. Various interests in the field of Micro- and Nanomechanics concern:

  • Miniaturized testing techniques (compression, tension, bending, fracture, fatigue, ...)
  • Small scale sample preparation techniques
  • Quantitative electron microscopy
  • Size effects influencing material properties
  • Dislocation plasticity in confined volumes
  • Deformation mechanisms in nanoscale or nanostructured materials (slip, twinning, grain boundaries)
  • Irradiation resistant materials by microstructural design
  • Temperature dependent deformation mechanisms of single crystal and nanocrystalline fcc and bcc metals
  • Thermal fatigue behavior and microstructural stability of metallic thin films
  • Local depth-dependent residual stresses in complex layered structures
  • Fracture processes and properties of small structures and multilayers
  • Deformation mechanisms in hexagonal metals
  • Temperature dependent deformation mechanisms in nanoporous materials

 

Methods

Size effects influencing material properties, dislocation plasticity in confined volumes, temperature and irradiation dependent deformation, thermal fatigue and fracture of small-scale structures and multilayers, in-situ micromechanical testing in the SEM, in-situ nanomechanical testing in the TEM, advanced nanoindentation techniques, digital image correlation methods

 

  • In situ micromechanical experiments in the SEM
  • In situ nanomechanical testing in the TEM
  • Broad ion beam and FIB based material structuring
  • Advanced nanoindentation techniques (e.g. elevated temperatures, rate dependencies)
  • Digital image correlation techniques to measure local deformations and microstructural evolution
  • Local determination of residual stresses with high depth resolution
  • Miniaturized fracture testing in the SEM and TEM
  • Novel laser-based fast thermo-mechanical heating/cycling techniques

 

Teaching

In-situ an In-operando Characterization Techniques in Materials Science (In-situ und in-operando Charakterisierungstechniken in der Werkstoffwissenschaft), Materialphysik I and III, Wissenschaftliche Arbeiten in der Materialphysik

 

  • Introduction to Materials Science
  • Materials Characterization
  • Materials Physics I
  • Materials Physics III
  • Exercises to Materials Physics
  • In-situ and in-operando characterization techniques in material science
  • Exercises to In-situ and in-operando characterization techniques in material science
  • Seminar Bachelor Thesis
  • Seminar Master Thesis
  • Scientific Work in Materials Physics

Publications

  • Addressing H-Material Interaction in Fast Diffusion Materials - A Feasibility Study on a Complex Phase Steel
    A. Massone, A. Manhard, A. Drexler, C. Posch, W. Ecker, V. Maier-Kiener, D. Kiener
    materials13, ARTN 4677 (2020)
  • Multi-method characterization approach to facilitate a strategy to design mechanical and electrical properties of sintered copper
    A. Wijaya, B. Eichinger, F. Chamasemani, B. Sartory, R. Hammer, V. Maier-Kiener, D. Kiener, M. Mischitz, R. Brunner
    Materials and Design197, ARTN 109188 (2020)
  • Open-cell tungsten nanofoams: Scaling behavior and structural disorder dependence of Young´s modulus and flow strength
    M. Zhao, K. Schlueter, M. Wurmshuber, M. Reitgruber, D. Kiener
    Materials and Design197, ARTN 109187 (2020)
  • Achieving work hardening by forming boundaries on the nanoscale in a Ti-based metallic glass matrix composite
    J. Fan, W. Rao, J. Qiao, P.K. Liaw, D. Sopu, D. Kiener, J. Eckert, G. Kang, Y. Wu
    J. Mater. Sci. Technol.50, 192-203 (2020)
  • Correlation between fracture characteristics and valence elctron concentration of sputtered Hf-C-N based thin films
    T. Glechner, S. Lang, R. Hahn, M. Alfreider, V. Moraes, D. Primetzhofer, J. Ramm, S. Kolozsvari, D. Kiener, H. Riedl
    Surface & Coatings Technology399, ARTN 126212 (2020)
  • An analytical solution for the correct determination of crack lengths via cantilever stiffness
    M. Alfreider, S. Kolitsch, S. Wurster, D. Kiener
    194, ARTN 108914 (2020)
  • Nanoscale pore structure of Carboniferous coals from the Ukrainian Donets Basin: A combined HRTEM and gas sorption study
    S. Vranjes-Wessely, D. Misch, I. Issa, D. Kiener, R. Fink, T. Seemann, B. Liu, G. Rantitsch, R. Sachsenhofer
    Int. Journal of Coal Geology2020, ARTN 103484 (2020)
  • An SEM compatible plasma cell for in situ studies of hydrogen-material interaction
    A. Massone, A. Manhard, W. Jacob, A. Drexler, W. Ecker, A. Hohenwarter, S. Wurster, D. Kiener
    Rev. Sci. Instrum.91, ARTN 043705 (2020)
  • Open-cell tungsten nanofoams: Chloride ion induced structure modification and mechanical behavior
    M. Zhao, M. Pfeifenberger, D. Kiener
    Results Phys.17, ARTN 103062 (2020)
  • Experimental and Numerical Investigation of the Deformation and Fracture Mode of Microcantilever
    W. Weglewski, P. Pitchai, K. Bochenek, G. Bolzon, R. Konetschnik, B. Sartory, R. Ebner, D. Kiener, M. Basista
    Metallurgical and Materials Transactions A51A, ARTN 5687 (2020)