Univ. Prof. Dr. Daniel Kiener

Function: Group Leader
Room: 412
Phone: +43 (0) 3842-804-412
E-Mail: daniel.kiener(at)unileoben.ac.at

 

Research

Micro- and Nanomechanics and Micro- and Nanostructure Characterization

When the material grain size or the sample volume itself are reduced to the micron- and sub-micron regime, significant size effects on the mechanical properties arise due to the increased contribution of surfaces and interfaces. We aim to derive a mechanistic understanding of the interplay between sample or microstructure size, the presence of individual microstructural elements such as interfaces, grain boundaries or dislocations, and the resulting global material properties. This is achieved by a combination of sophisticated methods such as highly localized and miniaturized quantitative experiments performed within high-resolution electron microscopy techniques, temperature- and rate dependent thermo-mechanical microstructure analysis, and advanced nanoindentation techniques. Various interests in the field of Micro- and Nanomechanics concern:

  • Miniaturized testing techniques (compression, tension, bending, fracture, fatigue, ...)
  • Small scale sample preparation techniques
  • Quantitative electron microscopy
  • Size effects influencing material properties
  • Dislocation plasticity in confined volumes
  • Deformation mechanisms in nanoscale or nanostructured materials (slip, twinning, grain boundaries)
  • Irradiation resistant materials by microstructural design
  • Temperature dependent deformation mechanisms of single crystal and nanocrystalline fcc and bcc metals
  • Thermal fatigue behavior and microstructural stability of metallic thin films
  • Local depth-dependent residual stresses in complex layered structures
  • Fracture processes and properties of small structures and multilayers
  • Deformation mechanisms in hexagonal metals
  • Temperature dependent deformation mechanisms in nanoporous materials

 

Methods

Size effects influencing material properties, dislocation plasticity in confined volumes, temperature and irradiation dependent deformation, thermal fatigue and fracture of small-scale structures and multilayers, in-situ micromechanical testing in the SEM, in-situ nanomechanical testing in the TEM, advanced nanoindentation techniques, digital image correlation methods

 

  • In situ micromechanical experiments in the SEM
  • In situ nanomechanical testing in the TEM
  • Broad ion beam and FIB based material structuring
  • Advanced nanoindentation techniques (e.g. elevated temperatures, rate dependencies)
  • Digital image correlation techniques to measure local deformations and microstructural evolution
  • Local determination of residual stresses with high depth resolution
  • Miniaturized fracture testing in the SEM and TEM
  • Novel laser-based fast thermo-mechanical heating/cycling techniques

 

Teaching

In-situ an In-operando Characterization Techniques in Materials Science (In-situ und in-operando Charakterisierungstechniken in der Werkstoffwissenschaft), Materialphysik I and III, Wissenschaftliche Arbeiten in der Materialphysik

 

  • Introduction to Materials Science
  • Materials Characterization
  • Materials Physics I
  • Materials Physics III
  • Exercises to Materials Physics
  • In-situ and in-operando characterization techniques in material science
  • Exercises to In-situ and in-operando characterization techniques in material science
  • Seminar Bachelor Thesis
  • Seminar Master Thesis
  • Scientific Work in Materials Physics

Publications

  • Mechanical performance of doped W–Cu nanocompositesWurmshuber M., M. Burtscher, S. Doppermann, R. Bodlos, D. Schreiber, L. RomanerMaterials Science & Enineering A857, 1-12 (2022)
  • Data-mining of in-situ TEM experiments: Towards unterstanding nanoscale fractureSteinberger D., I. Issa, R. Strobl, P. Imrich, D. Kiener, S. SandfeldComputational Materials Science216, 1-10 (2022)
  • Interface-related deformation phenomena in metallic glass/high entropy nanolaminatesXu Q., D. Sopu, X. Yuan, D. Kiener, J. EckertActa Mater.237, ARTN 118191 (2022)
  • Interface mediated deformation and fracture of an elastic–plastic bimaterial system resolved by in situ transmission scanning electron microscopyAlfreider M., G. Babus, F. Wang, J. Zechner, D.S. Gianola, D. KienerMaterials & Design111136, 1-17 (2022)
  • Crack length estimations for small-scale fracture experiments via image processing techniquesSchmuck K., M. Alfreider, D. Kienerjmr37, 2848–2861 (2022)
  • 100 years after Griffith: From brittle bulk fracture to failure in 2D materialsKiener D., S. Min HanMRS Bulletin8, 792-799 (2022)
  • FIB and Wedge Polishing Sample Preparation for TEM Analysis of Sol-Gel Derived Perovskite Thin FilmsSanz-Mateo J., M. Deluca, B. Satory, F. Benes, D. KienerCeramics5, 288-300 (2022)
  • In situ micromechanical analysis of a nano-crystalline W-Cu compositeBurtscher M., M. Alfreider, C. Kainz, K. Schmuck, D. KienerMaterial & Design, 1-9 (2022)
  • High-Throughput Micromechanical Testing Enabled by Optimized Direct Laser WritingJelinek A., S. Zak, M. Alfreider, D. KienerAdv. Eng. Mater.2022, ARTN 2200288 (2022)
  • Tuning mechanical properties of ultrafine-grained tungsten by manipulating grain boundary chemistryWurmshuber M., S. Jakob, S. Doppermann, S. Wurster, R. Bodlos, L. Romaner, V. Maier-Kiener, D. KienerActa Materialia232, ARTN 117939 (2022)