Peer Reviewed Journal Publication

  • A. Ebert, ; P. Kritzer, ; O. Osisiogu, ; Stepaniuk, T. (online: 2021) Component-by-component digit-by-digit construction of good polynomial lattice rules in weighted Walsh spaces. Constructive Approximation, Bd. n.a., S. to appear.
  • P. Kritzer, ; F. Pillichshammer, ; Wasilkowski, G.W. (2021) On quasi-Monte Carlo methods in weighted ANOVA spaces. Mathematics of Computation, Bd. 90, S. 1381-1406.
  • Wiart, Jaspar; Wong, Elaine (2021, online: 2020) Walsh functions, scrambled (0,m,s)-nets, and negative covariance: applying symbolic computation to quasi-Monte Carlo integration. Mathematics and Computers in Simulation, Bd. 182, S. 277-295.
  • A. Ebert, ; P. Kritzer, ; D. Nuyens, ; Osisiogu, O. (online: 2021) Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness. Journal of Complexity, Bd. 66, S. 101555.
  • P. Kritzer, ; F. Pillichshammer, ; Wozniakowski, H. (2020) Exponential tractability of linear weighted tensor product problemsin the worst-case setting for arbitary linear functionals. Journal of Complexity, Bd. 61, S. 101501.
  • Serdyuk, A.S.; Stepaniuk, T. (2020) Asymptotically best possible Lebesgue-type inequalities for the Fourier sums on sets of generalized Poisson integrals. Filomat, Bd. 34 (14), S. n.a.
  • P. Kritzer, ; F. Pillichshammer, ; L. Plaskota, ; Wasilkowski, G.W. (2020) On efficient weighted integration via a change of variables. Numerische Mathematik, Bd. 146, S. 545-570.
  • P. Kritzer, ; F. Pillichshammer, ; L. Plaskota, ; Wasilkowski, G.W. (2020) On alternative quantization for doubly weighted approximation and integration over unbounded domains. Journal of Approximation Theory, Bd. 256, S. 105433.
  • Stepaniuk, T. (2020) Hyperuniform point sets on flat tori: deterministic and probabilistic aspects. Constructive Approximation, Bd. 52, S. 313-339.
  • Kritzer, P.; Pillichshammer, F.; Wasilkowski, G.W. (2019, online: 2018) Truncation in average and worst case settings for special classes of $infty$-variate functions. Mathematics and Computers in Simulations, Bd. 161, S. 52-65.
  • Kritzer, P.; Kuo, F.Y.; Nuyens, D.; Ullrich, M. (2019, online: 2018) Lattice rules with random n achieve nearly the optimal O(n^{-alpha-1/2}) error independently of the dimension. Journal of Approximation Theory, Bd. 240, S. 96-113.
  • P. Kritzer, ; G. Leobacher, ; M. Szölgyenyi, ; Thonhauser, S. (2019) Approximation methods for piecewise deterministic Markov processes and their costs. Scandinavian Actuarial Journal, Bd. 2019, n. 4, S. 308-335.
  • Kritzer, P.; Wozniakowski, H. (2019, online: 2018) Simple characterizations of exponential tractability for linear multivariate problems. Journal of Complexity, Bd. 51, S. 110-128.
  • Ebert, A.; Kritzer, P. (2019, online: 2018) Constructing lattice points for numerical integration by a reduced fast successive coordinate search algorithm. Journal of Computational and Applied Mathematics, Bd. 351, S. 77-100.
  • Hefter, M.; Herzwurm, A.; Müller-Gronbach, Th. (2019, online: 2018) Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. Annals of Applied Probability, Bd. 29, S. 178-216.
  • Hinrichs, A.; Kritzer, P.; Pillichshammer, F.; Wasilkowski, G.W. (2019, online: 2018) Truncation Dimension for Linear Problems on Multivariate Function Spaces. Numerical Algorithms, Bd. 80, S. 661-685.
  • Dick, Josef; Irrgeher, Christian; Leobacher, Gunther; Pillichshammer, Friedrich (2018) On the optimal order of integration in Hermite spaces with finite smoothness. SIAM Journal on Numerical Analysis, Bd. 56 (2), S. 684-707.
  • Kritzer, P.; Laimer, H.; Pillichshammer, F. (2018, online: 2017) Tractability of L_2-approximation in hybrid function spaces. Functiones et Approximatio Commentarii Mathematici, Bd. 58 (1), S. 89-104.
  • Irrgeher, C.; Kritzer, P.; Pillichshammer, F. (2018, online: 2016) Integration and approximation in cosine spaces of smooth functions. Mathematics and Computers in Simulation, Bd. 143, S. 35-45.
  • Kritzer, P.; Pillichshammer, F.; Wozniakowski, H. (2017) L_infty-approximation in Korobov spaces with exponential weights. Journal of Complexity, Bd. 41, S. 102-125.
  • Laimer, H. (2017, online: 2016) On combined component-by-component constructions of lattice point sets. Journal of Complexity, Bd. 38, S. 22-30.
  • Kritzer, P.; Pillichshammer, F.; Wasilkowski, G.W. (2017, online: 2016) A note on equivalence of anchored and ANOVA spaces; lower bounds. Journal of Complexity, Bd. 38, S. 31-38.
  • Kritzer, P.; Niederreiter, H. (2016) Mixed orthogonal arrays, (u,m,e,s)-nets, and (u,e,s)-sequences. Discrete Mathematics, Bd. 339, S. 2199-2208.
  • Kritzer, P.; Pillichshammer, F.; Wasilkowski, G.W. (2016) Very low truncation dimension for high dimensional integration under modest error demand. Journal of Complexity, Bd. 35, S. 63-85.
  • Irrgeher, C.; Kritzer, P.; Pillichshammer, F.; Wozniakowski, H. (2016) Tractability of Multivariate Approximation Defined over Hilbert Spaces with Exponential Weights. Journal of Approximation Theory, Bd. 207, S. 301-338.
  • Irrgeher, C.; Kritzer, P.; Pillichshammer, F.; Wozniakowski, H. (2016) Approximation in Hermite spaces of smooth functions. Journal of Approximation Theory, Bd. 207, S. 98-126.
  • Hellekalek, P.; Kritzer, P.; Pillichshammer, F. (2016, online: 2015) Open type quasi-Monte Carlo integration based on Halton sequences in weighted Sobolev spaces. Journal of Complexity, Bd. 33, S. 169-189.
  • Dick, J.; Kritzer, P. (2016, online: 2015) On a projection-corrected component-by-component construction. Journal of Complexity, Bd. 32, S. 74-80.
  • Faure, H.; Kritzer, P.; Pillichshammer, F. (2015) From van der Corput to modern constructions of sequences for quasi-Monte Carlo rules. Indagationes Mathematicae, Bd. 26, S. 760-822.
  • Dick, J.; Kritzer, P.; Leobacher, G.; Pillichshammer, F. (2015) Numerical integration in log-Korobov and log-cosine spaces. Numerical Algorithms, Bd. 70, S. 753-775.
  • Serdyuk, A.S.; Stepaniuk, T. Uniform approximations by Fourier sums on classes of convolutions of periodic functions. Bulletin de la Societe des Sciences et des Lettres de Lodz. Serie, Recherches sur les Deformations, Bd. to appear, S. n.a.
  • A. Ebert, ; Pillichshammer, F. Tractability of approximation in the weighted Korobov space in the worst-case setting - a complete picture. Journal of Complexity, Bd. n.a., S. to appear.
  • A. Ebert, ; P. Kritzer, ; O. Osisiogu, ; Stepaniuk, T. Construction of good polynomial lattice rules in weighted Walsh spaces by an alternative component-by-component construction. Mathematics and Computers in Simulation, Bd. n.a., S. to appear.

Book/Monograph

  • K.-U. Schmidt, A. Winterhof (eds.) (2019) Combinatorics and finite fields: Difference sets, polynomials, pseudorandomness and applications. In Reihe: Radon Series on Computational and Applied Mathematics, 23; Berlin: de Gruyter.
  • H. Niederreiter, A. Winterhof (2015) Applied number theory.; Berlin: Springer.
  • Schmidt, K. U.; Winterhof, A. (2014) Sequences and Their Applications SETA 2014. In Reihe: Lecture Notes Computer Science, 8865. Aufl.: Springer.
  • G. Larcher, F. Pillichshammer, A. Winterhof, C. Xing (Eds.) (2014) Applied Algebra and Number Theory: Essays in Honour of Harald Niederreiter (on the occasion of his 70th birthday).; Cambridge: Cambridge University Press.
  • H. Niederreiter, A. Ostafe, D. Panario, A. Winterhof (Eds.) (2014) Algebraic Curves and Finite Fields: Cryptography and Other Applications. In Reihe: Radon Series on Computational and Applied Mathematics, 16. Aufl.; Berlin: de Gruyter.
  • P. Kritzer, H. Niederreiter, F. Pillichshammer, A. Winterhof (Eds.) (2014) Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications. In Reihe: Radon Series on Computational and Applied Mathematics, 15. Aufl.; Berlin: de Gruyter.
  • (2013) Finite fields and applications: Character sums and polynomials. In Reihe: Radon Series on Computational and Applied Mathematics, 11. Aufl.: de Gruyter.
  • H. Niederreiter, C. Xing (2009) Algebraic geometry in coding theory and cryptography.; Princeton: Princeton University Press.

Conference Contribution: Publication in Proceedings

  • Roche-Newton, O. (2015) A short proof of a near-optimal cardinality estimate for the size of a product of a sum set., Proceedings of Symposium on Computational Geometry 2015, S. to appear.
  • Yayla., O. (2014) Families of pseudorandom binary sequences with low cross-correlationmeasure., BalkanCryptSec 2014 pre-Proceeding.
  • Pirsic, G.; Winterhof, A. (2012) Boolean functions derived from pseudorandom binary sequences. In: T. Helleseth, J. Jedwab (Hrsg.), Sequences and Their Applications - SETA 2012 (SETA 2012) In Reihe: Lecture Notes Computer Science 7280: Springer, S. 101-109.
  • Chen, Z.; Winterhof, A. (2012) Additive character sums of polynomial quotients., Finite Fields and Applications, S. 67-73.
  • Ostafe, A.; Thomson, D.; Winterhof, A. (2012) On the Waring problem with multivariate Dickson polynomials., Finite fields and applications, S. 153-161.
  • M. Su, A. Winterhof (2011) Correlation of order k and linear complexity profile of Legendre-Sidelnikov sequences., IWSDA 2011, S. 1-4.
  • Winterhof, A. (2010) Recent results on recursive nonlinear pseudorandom number generators (invited paper). In: Carlet, Claude et al. (Hrsg.), Sequences and their Applications (SETA 2010) In Reihe: Lecture Notes in Computer Science 6338; Berlin: Springer, S. 113-124.
  • Niederreiter, H. (2010) The asymptotic theory of algebraic-geometry codes., Finite Fields: Theory and Applications (Fq9): American Math. Society, S. 339-348.
  • D. Gomez, A. Winterhof (2010) Waring's problem with Dickson polynomials in finite fields. In: McGuire, Gary et al. (Hrsg.), Finite fields: Theory and applications (Fq9) In Reihe: Contemporary Mathematics 518; Providence (RI): American Mathematical Society, S. 185-192.
  • Z. Chen, A. Ostafe, A. Winterhof (2010) Structure of pseudorandom numbers derived from Fermat quotients. In: Hasan, M. Anwar et al. (Hrsg.), Arithmetic of finite fields. (Third international workshop, WAIFI 2010.) In Reihe: Lecture Notes in Computer Science 6087; Berlin: Springer, S. 73-85.
  • N. Brandstätter, G. Pirsic, A. Winterhof (2009) Two-prime Sidelnikov sequences., Workshop on Coding and Cryptography, S. 389-398.
  • Z. Chen, D. Gomez, A. Winterhof (2009) Distribution of digital explicit inversive pseudorandom numbers and their binary threshold sequence. In: L'Ecuyer, Pierre et al. (Hrsg.), Monte Carlo and quasi-Monte Carlo methods 2008 (MC2QMC 2008); Berlin: Springer, S. 249-258.

Contribution in Collection

  • N. Anbar, A. Ozdak, V. Patel, L. Quoos, A. Somoza, A. Topuzoğlu (2019) On the Carlitz rank of permutation polynomials: Recent developments. In: Bouw, I., Özman, E., Johnson-Leung, J., Newton, R. (Hrsg.), Proceedings of Women in Numbers Europe 2: Springer, S. 39--55.
  • Cesmelioglu, A.; Meidl, W.; Pott, A. (2019) A survey on bent functions and their duals. In: Schmidt, K.-U.; Winterhof, A. (Hrsg.), Combinatorics and Finite Fields, S. 39--56.
  • Kritzer, P.; Niederreiter, H.; Pillichshammer, F. (2018) Ian Sloan and Lattice Rules. In: Dick, J.; Kuo, F.Y.; Wozniakowski, H. (Hrsg.), Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan: Springer, S. 741-769.
  • R. Hofer, L. Merai, A. Winterhof (2017) Measures of pseudorandomness: Arithmetic autocorrelation and correlation measure. In: C. Elsholtz, P. Grabner (Hrsg.), Number Theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday.: Springer, S. 303-312.
  • C. Schretter, Z. He, M. Gerber, N. Chopin, H. Niederreiter (2016) Van der Corput and golden ratio sequences along the Hilbert space-filling curve., Monte Carlo and quasi-Monte Carlo methods, 163. Aufl.: Springer, S. 531-544.
  • R. Hofer, H. Niederreiter (2016) Vandermonde nets and Vandermonde sequences., Monte Carlo and quasi-Monte Carlo methods, 163. Aufl.; Cham: Springer, S. 87-105.
  • Niederreiter, H. (2016) Finite fields., Encyclopedia of Applied and Computational Mathematics; Berlin: Springer, S. 541--545.
  • Niederreiter, H. (2015) Random number generation., Princeton Companion to Applied Mathematics: Princeton University Press, S. 761-762.
  • A. Çeşmelioğlu, W. Meidl (2015) Non weakly regular bent polynomials from vectorial quadratic functions., Topics in finite fields; Providence, RI: Amer. Math. Soc., S. 83-93.
  • R. Hofer, I. Pirsic (2014) Controlling the shape of generation matrices in global function field constructions of digital sequences. In: G. Larcher, F. Pillichshammer, A. Winterhof, C. Xing (Hrsg.), Applied Algebra and Number Theory: Cambridge University Press, S. 164-189.
  • G. Larcher, F. Pillichshammer, A. Winterhof, C. Xing (2014) Some highlights of Harald Niederreiter's work. In: G. Larcher, F. Pillichshammer, A. Winterhof, C. Xing (Hrsg.), Applied Algebra and Number Theory: Essays in Honour of Harald Niederreiter (on the occasion of his 70th birthday); Cambridge: Cambridge University Press, S. 1-18.
  • Niederreiter, H. (2013) Finite fields and quasirandom points. In: P. Charpin, A. Pott, A. Winterhof (Hrsg.), Finite fields and Applications: Character sums and polynomials, 11. Aufl.: de Gruyter, S. 169-196.
  • Niederreiter, H. (2013) (t,m,s)-nets and (t,s)-sequences. In: G. Mullen, D. Panario (Hrsg.), Handbook of Finite Fields: Chapman & Hall, S. 619-630.
  • Niederreiter, H. (2013) Algebraic geometry codes. In: G. Mullen, D. Panario (Hrsg.), Handbook of finite fields: Chapman & Hall, S. 703-712.
  • Ostafe A. , Winterhof A. (2013) Some applications of character sums. In: G. Mullen, D. Panario (Hrsg.), Handbook of Finite Fields: Chapman & Hall, S. 170-184.
  • Meidl W., Winterhof A. (2013) Linear complexity of sequences and multisequences. In: G. Mullen, D. Panario (Hrsg.), Handbook of Finite Fields: Chapman & Hall, S. 324-336.
  • Rötteler, M.; Winterhof, A. (2013) Finite fields in quantum information theory. In: G. Mullen, D. Panario (Hrsg.), Handbook of Finite Fields: Chapman & Hall, S. 834-840.
  • Niederreiter, H. (2013) LFSR sequences and maximal period sequences. In: G. Mullen, D. Panario (Hrsg.), Handbook of Finite Fields: Chapman & Hall, S. 311-317.
  • Niederreiter, H. (2012) Low-discrepancy simulation. In: J.-C. Duan, W.k. Härdle, J.E. Gentle (Hrsg.), Handbook of Computational Finance; Berlin: Springer, S. 703–729.
  • A. Topuzoglu, A. Winterhof (2011) Pseudorandom numbers: Uniform distribution and exponential sums. In: Boztas, S. (Hrsg.), CRC Handbook of Sequences, Codes and Applications: Chapman and Hall/CRC Press, S. to appear.
  • Winterhof, A. (2011) Measures of pseudorandomness. In: Boztas, S. (Hrsg.), CRC Handbook of Sequences, Codes and Applications: Chapman and Hall/CRC Press, S. to appear.
  • Niederreiter, H. (2010) Quasi-Monte Carlo methods. In: Cont, R. (Hrsg.), Encyclopedia of Quantitative Finance: Wiley, S. 1460-1472.
  • Winterhof, A. (2010) Linear complexity and related complexity measures. In: Woungang, I. (Hrsg.), Selected Topics in Information and Coding Theory; Singapore: World Scientific, S. 3-40.

Dissertation

  • Warren, A. (2020) The Sum-Product Phenomenon and Discrete Geometry. Doktorarbeit, Institute for Financial Mathematics and Applied Number Theory, JKU Linz, Linz.
  • Hofer, R. (2017) New Bounds on Some Measures of Pseudorandomness. Doktorarbeit, RICAM, JKU Linz, Linz.

Editorship

  • G. Leobacher, E. Buckwar, P. Kritzer, F. Pillichshammer, A. Winterhof (Hrsg.) (2018) Mathematics and computers in simulation: Special issue 10th IMACS seminar on Monte Carlo methods., 143. Aufl.