Thomas Takacs, Deepesh Toshniwal (2023, online: 2022) Almost-C1 splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems. Computer Methods in Applied Mechanics and Engineering, Bd. 403A, S. 115640.
Andrea Farahat, Bert Jüttler, Mario Kapl, Thomas Takacs (2023, online: 2022) Isogeometric analysis with C1-smooth functions over multi-patch surfaces. Computer Methods in Applied Mechanics and Engineering, Bd. 403A, S. 115706.
Pascal Weinmüller, Thomas Takacs (online: 2022) An approximate C1 multi-patch space for isogeometric analysis with a comparison to Nitsche’s method. Computer Methods in Applied Mechanics and Engineering, Bd. 401, S. 115592.
Chiu Ling Chan, Felix Scholz, Thomas Takacs (2022) Locally refined quad meshing for linear elasticity problems based on convolutional neural networks. Engineering with Computers, Bd. ., S. .
Maier, Roland; Morgenstern, Philipp; Takacs, Thomas (2022) Adaptive refinement for unstructured T-splines with linear complexity. Comput. Aided Geom. Des., Bd. 96, S. ARTN 102117.
Roland Maier, Philipp Morgenstern, Thomas Takacs (online: 2022) Adaptive refinement for unstructured T-splines with linear complexity. Computer Aided Geometric Design, Bd. 96, S. 102117.
Merchel, Sandra; Jüttler, Bert; Mokriš, Dominik; Pan, Maodong (2022) Fast Formation of Matrices for Least-Squares Fitting by Tensor-Product Spline Surfaces. Computer-Aided Design, Bd. 150 (103307).
Jüttler, Bert; Lubbes, Niels; Schicho, Josef (2022, online: 2021) Projective isomorphisms between rational surfaces. Journal of Algebra, Bd. 594, S. 571-596.
Shakur, Emad; Amir, Oded (2022) Stress-constrained topology optimization with precise and explicit geometric boundaries. Structural and Multidisciplinary Optimization, Bd. 65 (2), S. 1--21.
Jüttler, Bert; Lubbes, Niels; Schicho, Josef (2021) Projective isomorphisms between rational surfaces. Journal of Algebra, Bd. 594, S. 571-596.
Barbier, Tobias; Shakour, Emad; Sigmund, Ole; Lombaert, Geert; Schevenels, Mattias (2021) Topology optimization of damage‐resistant structures with a predefined load‐bearing capacity. International Journal for Numerical Methods in Engineering, Bd. 124 (4), S. 1114-1145.
Pan, Maodong; Jüttler, Bert; Scholz, Felix (2021) Efficient matrix computation for isogeometric discretizations with hierarchical B-splines in any dimension. Computer Methods in Applied Mechanics and Engineering, Bd. 388 (114210).
Scholz, Felix; Jüttler, Bert (2021) Using High-Order Transport Theorems for Implicitly Defined Moving Curves to Perform Quadrature on Planar Domains. SIAM Journal on Numerical Analysis, Bd. 59, S. 2138--2162.
Kargaran, Somayeh; Jüttler, Bert; ThomasTakacs (2021) IGA Using Offset-based Overlapping Domain Parameterizations. Computer-Aided Design, Bd. 139 (103087).
Scholz, Felix; Juettler, Bert (2021) USING HIGH-ORDER TRANSPORT THEOREMS FOR IMPLICITLY DEFINED MOVING CURVES TO PERFORM QUADRATURE ON PLANAR DOMAINS. SIAM J. Numer. Anal., Bd. 59 (4), S. 2138-2162.
Kapl, Mario; Vitrih, Vito (2021) C-s-smooth isogeometric spline spaces over planar bilinear multi-patch parameterizations. Adv. Comput. Math., Bd. 47 (3), S. ARTN 47.
Scholz, Felix; Jüttler, Bert (2021) Parameterization for polynomial curve approximation via residual deep neural networks. Computer Aided Geometric Design, Bd. 85, S. 101977.
Scholz, Felix; Juettler, Bert (2021) Parameterization for polynomial curve approximation via residual deep neural networks. Comput. Aided Geom. Des., Bd. 85, S. ARTN 101977.
Pan, Maodong; Jüttler, Bert; Mantzaflaris, Angelos (2021) Efficient matrix assembly in isogeometric analysis with hierarchical B-splines. Journal of Computational and Applied Mathematics, Bd. 390 (113278).
Grošelj, Jan; Kapl, Mario; Knez, Marjeta; Takacs, Thomas; Vitrih, Vito (2020) A super-smooth C1 spline space over planar mixed triangle and quadrilateral meshes. Computers & Mathematics with Applications, Bd. 80 (12), S. 2623-2643.
Bracco, Cesare; Giannelli, Carlotta; Kapl, Mario; Vazquez, Rafael (2020) Isogeometric analysis with C1 hierarchical functions on planar two-patch geometries. Computers & Mathematics with Applications, Bd. 80 (11), S. 2538-2562.
Birner, Katharina; Jüttler, Bert; Mantzaflaris, Angelos (2020) Approximation power of C1-smooth isogeometric splines on volumetric two-patch domains. Lecture Notes in Computational Science and Engineering, Bd. 133, S. tba.
Pan, Maodong; Jüttler, Bert; Giust, Alessandro (2020) Fast formation of isogeometric Galerkin matrices via integration by interpolation and look-up. Computer Methods in Applied Mechanics and Engineering, Bd. 366, S. 113005.
Giust, Alessandro; Jüttler, Bert; Mantzaflaris, Angelos (2020) Local (T)HB-spline projectors via restricted hierarchical spline fitting. Computer Aided Geometric Design, Bd. 80, S. 101865.
Dyn, Nira; Jüttler, Bert; Mokriš, Dominik (2020) On the error in transfinite interpolation by low-rank functions. ournal of Approximation Theory, Bd. 253, S. 105379.
Kapl, Mario; Vitrih, Vito (2020, online: 2019) Isogeometric collocation on planar multi-patch domains. Computer Methods in Applied Mechanics and Engineering, Bd. 360, S. 112684.
Kapl, Mario; Sangalli, Giancarlo; Takacs, Thomas (2020) Isogeometric analysis with C1 functions on planar, unstructured quadrilateral meshes. SMAI Journal of Computational Mathematics, Bd. S5, S. 67-86.
Scholz, Felix; Jüttler, Bert (2019) Numerical integration on trimmed three-dimensional domains with implicitly defined trimming surfaces. Computer Methods in Applied Mechanics and Engineering, Bd. 357, S. 112577.
Kargaran, S.; Jüttler, B.; Kleiss, K.; Mantzaflaris, A.; Takacs, T. (2019) Overlapping multi-patch structures in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, Bd. 356, S. 325-353.
Kapl, Mario; Vitrih, Vito (2019) Solving the triharmonic equation over multi-patch planar domains using isogeometric analysis. Journal of Computational and Applied Mathematics, Bd. 358, S. 385-404.
Haberleitner, Michael; Jüttler, Bert; Masson, Yannick (2019) Isogeometric Segmentation via Midpoint Subdivision Suitable Solids. Computer-Aided Design, Bd. 114, S. 179-190.
Xia, Yang; Mantzaflaris, Angelos; Juttler, Bert; Pan, Hao; Hu, Ping et al. [..] (2019) Design of self-supporting surfaces with isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, Bd. 353, S. 328-347.
Birner, Katharina; Kapl, Mario (2019) The space of C1-smooth isogeometric spline functions on trilinearly parameterized volumetric two-patch domains. Computer Aided Geometric Design, Bd. 70, S. 16-30.
Kapl, Mario; Sangalli, Giancarlo; Takacs, Thomas (2019) An isogeometric C1 subspace on unstructured multi-patch planar domains. Computer Aided Geometric Design, Bd. 69, S. 55-75.
Falini, Antonella; Jüttler, Bert (2019) THB-splines multi-patch parameterization for multiply-connected planar domains via template segmentation. Journal of Computational and Applied Mathematics, Bd. 349, S. 390-402.
Mantzaflaris, Angelos; Scholz, Felix; Toulopoulos, Ioannis (2019, online: 2018) Low-Rank Space-Time Decoupled Isogeometric Analysis for Parabolic Problems with Varying Coefficients. Computational Methods in Applied Mathematics, Bd. 19(1), S. 123-136.
Birner, Katharina; Jüttler, Bert; Mantzaflaris, Angelos (2018) Bases and dimensions of C1-smooth iogeometric splines onvolumetric two-patch domains. Graphical Models, Bd. 99, S. 46-56.
Seiler, Agnes; Großmann, David; Jüttler, Bert (2018) Spline surface fitting using normal data and norm-like functions. Computer Aided Geometric Design, Bd. 64, S. 37-49.
Scholz, Felix; Mantzaflaris, Angelos; Jüttler, Bert (2018) Partial tensor decomposition for decoupling isogeometric Galerkin discretizations. Elsevier Computer Methods in Applied Mechanics and Engineering, Bd. 336, S. 485-506.
Kapl, Mario; Vito, Vitrih (2018, online: 2017) Dimension and basis construction for C2-smooth isogeometric spline spaces over bilinear-like G2 two-patch parameterizations. Journal of Computational and Applied Mathematics, Bd. 335, S. 289-311.
Kapl, Mario; Sangalli, Giancarlo; Takacs, Thomas (2018, online: 2017) Construction of analysis-suitable G1 planar multi-patch parameterizations. Computer-Aided Design, Bd. 97, S. 41-55.
Bressan, Andrea; Jüttler, Bert (2018, online: 2017) Inf-sup stability of isogeometric Taylor-Hood and Sub-Grid methods for the Stokes problemwith hierarchical splines. IMA Journal of Numerical analysis, Bd. 38 (2), S. 955-975.
Jüttler, Bert; Kleiss, Stefan (2017) Coupling adaptively refined multi-patch spline discretizations via boundary compatibility. Computers&Mathematics with Applications, Bd. 74 (7), S. 1626-1647.
Strodthoff, Birgit; Jüttler, Bert (2017) Automatic decomposition of 3D solids into contractible pieces using Reeb graphs. Computer-Aided Design, Bd. 90, S. 157-167.
Kapl, Mario; Vitrih, Vito (2017) Space of C2-smooth geometrically continuous isogeometric functions on planar multi-patch geometries: Dimension and numerical experiments. Computers & Mathematics with Applications, Bd. 73 (10), S. 2319-2338.
Dong, Guozhi; Jüttler, Bert; Scherzer, Otmar; Takacs, Thomas (2017) Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Probl. Imaging, Bd. 11 (2), S. 221-246.
Mantzaflaris, A., Jüttler, B., Khoromskij, B.N., Langer, U. (2017) Low rank tensor methods in Galerkin-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, Bd. 316, S. 1062-1085.
Kapl, Mario; Sangalli, Giancarlo; Takacs, Thomas (2017) Dimension and basis construction for analysis-suitable G1 two-patch parameterizations. Computer aided Geometric Design, Bd. 52-53, S. 75-89.
Kapl, Mario; Vitrih, Vito (2017, online: 2016) Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries. Computers & Mathematics with Applications, Bd. 73 (1), S. 37–59.
Kapl, M., Buchegger, F., Bercovier, M., Jüttler, B. (2017, online: 2016) Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries. Computer Methods in Applied Mechanics and Engineering, Bd. 316, S. 209-234.
Hofreither, C., Jüttler, B., Kiss, G., Zulehner, W. (2016) Multigrid methods for isogeometric analysis with THB-splines. (308), S. 96-112.
Nguyen, D.-M., Pauley, M., Jüttler, B. (2016) Isogeometric segmentation: Construction of auxiliary curves. (70), S. 89-99.
Zafeirakopoulos, Angelos Mantzaflaris and Hamid Rahkooy and Zafeirakis (2016) Efficient computation of dual space and directional multiplicity of an isolated point., Bd. 23231, S. 1-34.
Mantzaflaris, A.; Jüttler, B.; Khoromskij, B.; Langer, Ulrich (online: 2016) Low rank tensor methods in galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Engrg.
Jüttler, Bert; Mantzaflaris, Angelos; Perl, Ricardo; Rumpf, Martin (2016) On numerical integration in isogeometric subdivision methods for PDEs on surfaces. Comput. Meth. Appl. Mech. Eng., Bd. 302, S. 131-146.
Buchegger, F., Jüttler, B., Mantzaflaris, A. (2016) Adaptively refined multi-patch B-splines with enhanced smoothness. (272), S. 159-172.
Giannelli, Carlotta; Jüttler, Bert; Kleiss, Stefan K.; Mantzaflaris, Angelos; Simeon, Bernd et al. [..] (2016) THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Meth. Appl. Mech. Eng., Bd. 299, S. 337-365.
Villamizar, Nelly; Mantzaflaris, Angelos; Jüttler, Bert (2016, online: 2015) Characterization of bivariate hierarchical quartic box splines on a three-directional grid. Computer Aided Geometric Design, Bd. 41, S. 1-15.
Kapl, M.; Vito, V.; Jüttler, B.; Birner, K. (2015) Isogeometric analysis with geometrically continuous functions on two-patch geometries. Computers & Mathematics with Applications, Bd. 70, S. 1518-1538.
Jüttler, B.; Kapl, M.; Nguyen, D-M.; Pang, Q.; Pauley, M. (2014) Isogeometric segmentation: The case of contractible solids without non-convex edges. Computer-Aided Design, Bd. 57, S. 74-90.
Buchegger, F.; Jüttler, B.; Kapl, M. (2014) Total curvature variation fairing for medial axis regularization. Graphical Models, Bd. 76, S. 633-647.
Groselj, Jan; Kapl, Mario; Knez, Marjeta; Takacs, Thomas; Vitrih, Vito A super-smooth C1 spline space over mixed triangle and quadrilateral meshes. Computers & Mathematics with Applications.