Georg Grasegger

Georg Grasegger
- Senior Research Scientist
- Symbolic Computation
- +43 732 2468 5270
- Georg.Grasegger(at)oeaw.ac.at
Research interests
- Rigidity Theory
- Symbolic Computation
- Algebraic Geometry
- Algebraic Differential Equations
Publications
Single-cell 3D genome reconstruction in the haploid setting using rigidity theory
Single-cell 3D genome reconstruction in the haploid setting using rigidity theory. / Dewar, Sean; Grasegger, Georg; Kubjas, Kaie et al.
in: Journal of Mathematical Biology, Jahrgang 90, Nr. 4, 45, 04.2025, S. 45.Flexibility and rigidity of frameworks consisting of triangles and parallelograms
Flexibility and rigidity of frameworks consisting of triangles and parallelograms. / Grasegger, Georg; Legerský, Jan.
in: Computational Geometry: Theory and Applications, Jahrgang 120, 19.02.2024, S. 102055.On the existence of paradoxical motions of generically rigid graphs on the sphere
On the existence of paradoxical motions of generically rigid graphs on the sphere. / Gallet, Matteo; Grasegger, Georg; Legerský, Jan et al.
in: SIAM Journal on Discrete Mathematics, Jahrgang 35, Nr. 1, 12.03.2021, S. 325-361.Deciding the existence of rational general solutions for first-order algebraic ODEs
Deciding the existence of rational general solutions for first-order algebraic ODEs. / Vo, Thieu N; Grasegger, Georg; Winkler, Franz.
in: Journal of Symbolic Computation, Jahrgang 87, 01.07.2018, S. 127-139.Rational General Solutions of Systems of First-Order Partial Differential Equations
Rational General Solutions of Systems of First-Order Partial Differential Equations. / Grasegger, Georg; Lastra, Alberto; Sendra, J Rafael et al.
in: Journal of Computational and Applied Mathematics, Nr. 331, 15.03.2018, S. 88-103.A solution method for autonomous first-order algebraic partial differential equations
A solution method for autonomous first-order algebraic partial differential equations. / Grasegger, Georg; Lastra, Alberto; Sendra, J Rafael et al.
in: Journal of Computational and Applied Mathematics, Jahrgang 300, 18.01.2016, S. 119--133.
Flexible Placements of Graphs with Rotational Symmetry
Flexible Placements of Graphs with Rotational Symmetry. / Dewar, Sean; Grasegger, Georg; Legerský, Jan et al.
2nd IMA Conference on Mathematics of Robotics. Springer, Cham, 2022. S. 89-97 (Springer Proceedings in Advanced Robotics).Zero-Sum Cycles in Flexible Non-triangular Polyhedra
Zero-Sum Cycles in Flexible Non-triangular Polyhedra. / Gallet, Matteo; Grasegger, Georg; Legerský, Jan et al.
2nd IMA Conference on Mathematics of Robotics. Springer, Cham, 2022. S. 137-143 (Springer Proceedings in Advanced Robotics).Computing Animations of Linkages with Rotational Symmetry
Computing Animations of Linkages with Rotational Symmetry. / Dewar, Sean; Grasegger, Georg; Legerský, Jan.
36th International Symposium on Computational Geometry (SoCG 2020). 2020. (Leibniz International Proceedings in Informatics (LIPIcs)).Animated Motions of Exceptional Flexible Instances of Generically Rigid Graphs
Animated Motions of Exceptional Flexible Instances of Generically Rigid Graphs. / Grasegger, Georg; Legerský, Jan; Schicho, Josef.
Bridges Linz 2019 Conference Proceedings. Tessellations Publishing, 2019. S. 255–262.A decision algorithm for rational general solutions of first-order algebraic ODEs
A decision algorithm for rational general solutions of first-order algebraic ODEs. / Grasegger, Georg; Vo, Thieu N; Winkler, Franz.
XV Encuentro de Álgebra computacional y aplicaciones. Logroño, 2016. S. 101-104.
Dataset of realisation numbers of rigid graphs in dimension 2
Dataset of realisation numbers of rigid graphs in dimension 2
Dewar, S., Grasegger, G., Schicho, J., Tewari, A. K. & Warren, A., Austrian Academy of Sciences, 17 Sep. 2025
Non-planar graphs with various apex properties
Non-planar graphs with various apex properties
Grasegger, G., Dewar, S., Kastis, E., Nixon, A. & Servatius, B., Austrian Academy of Sciences, 2024
DOI: 10.5281/zenodo.10671129, https://doi.org/10.5281/zenodo.10671129
Non-planar apex graphs with different independence properties
Non-planar apex graphs with different independence properties
Grasegger, G., Dewar, S., Kastis, E., Nixon, A. & Servatius, B., Austrian Academy of Sciences, 2024
DOI: 10.5281/zenodo.10671321, https://doi.org/10.5281/zenodo.10671321
Non-planar (3,6)-sparse graphs with various apex properties
Non-planar (3,6)-sparse graphs with various apex properties
Grasegger, G., Dewar, S., Kastis, E., Nixon, A. & Servatius, B., Austrian Academy of Sciences, 2024
DOI: 10.5281/zenodo.10671293, https://doi.org/10.5281/zenodo.10671293
Dataset of (3,6)-tight graphs
Dataset of (3,6)-tight graphs
Grasegger, G., Austrian Academy of Sciences, 2024
DOI: 10.5281/zenodo.13768206, https://doi.org/10.5281/zenodo.13768206
Circuits in the 3-dimensional rigidity matroid
Circuits in the 3-dimensional rigidity matroid
Grasegger, G., Austrian Academy of Sciences, 2024
DOI: 10.5281/zenodo.10671346, https://doi.org/10.5281/zenodo.10671346
Marble graphs with various rigidity properties
Marble graphs with various rigidity properties
Dewar, S., Grasegger, G., Kubjas, K., Mohammadi, F. & Nixon, A., Austrian Academy of Sciences, 2023
DOI: 10.5281/zenodo.8114282, https://doi.org/10.5281/zenodo.8114282
Dataset of redundantly rigid graphs
Dataset of redundantly rigid graphs
Grasegger, G., Austrian Academy of Sciences, 2022
DOI: 10.5281/zenodo.7473079, https://doi.org/10.5281/zenodo.7473079
Dataset of globally rigid graphs
Dataset of globally rigid graphs
Grasegger, G., Austrian Academy of Sciences, 2022
DOI: 10.5281/zenodo.7473053, https://doi.org/10.5281/zenodo.7473053
Ramanujan graphs with degree 3, 4, 5, 6, or 7
Ramanujan graphs with degree 3, 4, 5, 6, or 7
M Cioabă, S., Dewar, S., Grasegger, G. & Gu, X., Austrian Academy of Sciences, 2022
DOI: 10.5281/zenodo.6579837, https://doi.org/10.5281/zenodo.6579837
Rigidity of 4-regular Ramanujan graphs
Rigidity of 4-regular Ramanujan graphs
M Cioabă, S., Dewar, S., Grasegger, G. & Gu, X., Austrian Academy of Sciences, 2022
DOI: 10.5281/zenodo.6579718, https://doi.org/10.5281/zenodo.6579718
The number of realizations of all Laman graphs with at most 12 vertices
The number of realizations of all Laman graphs with at most 12 vertices
Capco, J., Gallet, M., Grasegger, G., Koutschan, C., Lubbes, N. & Schicho, J., Austrian Academy of Sciences, 2018
DOI: 10.5281/zenodo.1245517, https://doi.org/10.5281/zenodo.1245517