Wheat Improvement : : Food Security in a Changing Climate.

Gardado en:
Detalles Bibliográficos
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2022.
©2022.
Year of Publication:2022
Edición:1st ed.
Idioma:English
Acceso en liña:
Descrición Física:1 online resource (660 pages)
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Acknowledgments
  • Contents
  • List of Figures
  • List of Tables
  • About the Editors and Contributors
  • Editors
  • Contributors
  • Abbreviations
  • Part I: Background
  • Chapter 1: Wheat Improvement
  • 1.1 Learning Objectives
  • 1.2 Background on Crop Breeding
  • 1.3 Crop Improvement in Pre-history
  • 1.4 Breeding in the Industrial Age
  • 1.5 Technologies That Have Impacted Crop Breeding in Recent Decades
  • 1.6 Integration of Disciplines
  • 1.7 Networking and Sharing
  • 1.8 Choosing Crop Improvement Approaches
  • 1.9 Main Objectives of the Textbook 'Wheat Improvement - Food Security in a Changing Climate'
  • 1.10 Key Concepts
  • 1.11 Conclusions
  • References
  • Chapter 2: History of Wheat Breeding: A Personal View
  • 2.1 Learning Objectives
  • 2.2 Introduction
  • 2.3 Past Wheat Improvement at the Farm Level and in the Breeders' Plots
  • 2.4 Past Activities Associated with Greater Breeding Success and Efficiency
  • 2.5 Some Future Considerations for Breeding
  • 2.6 Organization and Funding of Wheat Breeding
  • 2.7 Key Concepts
  • References
  • Chapter 3: Defining Target Wheat Breeding Environments
  • 3.1 Learning Objectives
  • 3.2 Introduction: Wheat Mega-environments in History and the Context of Global Wheat Breeding
  • 3.3 Major Factors That Broadly Impact the Definition of Target Environments
  • 3.3.1 Flowering Time: Photoperiod and Vernalization
  • 3.3.2 Water Availability and Temperature
  • 3.3.3 Diseases
  • 3.4 Target Population of Environments
  • 3.5 Multi-environmental Testing and Genotype-by-Environment Interactions
  • 3.6 Example of TPE Definition
  • 3.7 Key Concepts and Conclusions
  • References
  • Chapter 4: Global Trends in Wheat Production, Consumption and Trade
  • 4.1 Learning Objectives
  • 4.2 Introduction
  • 4.3 Data and Methods
  • 4.4 Trends in Global Wheat Production.
  • 4.5 Trends in Global Wheat Consumption
  • 4.6 Wheat Prices and Trade
  • 4.7 Key Concepts
  • 4.8 Conclusion
  • References
  • Part II: Delivering Improved Germplasm
  • Chapter 5: Breeding Methods: Line Development
  • 5.1 Learning Objectives
  • 5.2 Introduction
  • 5.3 Pedigree Breeding
  • 5.4 Bulk and Composite Breeding
  • 5.5 Single Seed Descent
  • 5.6 Doubled-Haploids
  • 5.7 Backcross Methods
  • 5.8 Mutation Breeding
  • 5.9 Multilines
  • 5.10 Key Concepts
  • 5.11 Conclusion
  • References
  • Chapter 6: Breeding Methods: Population Improvement and Selection Methods
  • 6.1 Learning Objectives
  • 6.2 Population Improvement
  • 6.2.1 Evolutionary Breeding
  • 6.2.2 Recurrent Selection
  • 6.3 Selection Methods
  • 6.3.1 Mass Selection Systems
  • 6.3.2 Selection Based on Best Linear Unbiased Prediction (BLUP)
  • 6.3.3 Marker-Assisted Selection
  • 6.3.4 Genomic Selection
  • 6.4 Key Concepts
  • 6.5 Conclusions
  • References
  • Chapter 7: Achieving Genetic Gains in Practice
  • 7.1 Learning Objectives
  • 7.2 Introduction
  • 7.3 Product Profile-Based Breeding
  • 7.4 Parental Selection and Crossing Strategies
  • 7.5 Early-Generation Advancement and Selection Strategies
  • 7.6 Advancement Decisions for Elite Lines and Phenotyping Strategies
  • 7.7 International Screening Nurseries and Yield Trials for Identifying Superior Lines from Multi-environment Phenotyping
  • 7.8 Integration of Genomic Selection
  • 7.9 Partnerships with National Programs for Variety Identification, Release, and Dissemination
  • 7.10 Outlook to Further Accelerate Genetic Gain
  • 7.10.1 'Rapid Bulk Generation Advancement (RBGA) Scheme (Three-Year Breeding Cycle Time)
  • 7.10.2 'Rapid-Cycle Recurrent Selection (RCRS)' Scheme (Two-Year Breeding Cycle Time)
  • 7.11 Key Concepts
  • 7.12 Conclusion
  • References.
  • Chapter 8: Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability
  • 8.1 Learning Objectives
  • 8.2 Economic Importance, Historical Impacts, Status of Rust Diseases
  • 8.2.1 Stem Rust
  • 8.2.2 Stripe Rust
  • 8.2.3 Leaf Rust
  • 8.3 Global Rust Phenotyping Network - Critical Tool to Understand Host Resistance and Pathogenic Diversity on a Global Scale
  • 8.4 International Research Networks in Mitigating the Threats of Emerging New Races-Early Detection, Forecasting and Prediction
  • 8.5 Types of Resistance, Strategies to Deploy Different Resistance Mechanisms to Attain Resistance Durability
  • 8.5.1 Race-Specific/Seedling Resistance
  • 8.5.2 APR Genes Conferring Pleiotropic Effects
  • 8.6 Enhancing Resistance Durability Through Breeding Success, Setbacks and Lessons Learnt
  • 8.7 Integrating New Tools for Resistance Breeding Presents Opportunities for Wheat Improvement
  • 8.8 Key Concepts
  • 8.9 Conclusions
  • References
  • Chapter 9: Globally Important Non-rust Diseases of Wheat
  • 9.1 Learning Objectives
  • 9.2 Introduction
  • 9.3 Spike Diseases
  • 9.3.1 Fusarium Head Blight
  • 9.3.2 Wheat Blast
  • 9.3.3 Karnal Bunt
  • 9.4 Leaf Spotting Diseases
  • 9.4.1 Tan Spot
  • 9.4.2 Septoria Nodorum Blotch
  • 9.4.3 Spot Blotch
  • 9.4.4 Septoria Tritici Blotch
  • 9.5 Root Diseases
  • 9.6 Key Concepts
  • 9.7 Conclusions
  • References
  • Chapter 10: Abiotic Stresses
  • 10.1 Learning Objectives
  • 10.2 Introduction
  • 10.2.1 Australia
  • 10.2.2 North America
  • 10.2.3 Europe
  • 10.2.4 Russia and Ukraine
  • 10.2.5 India
  • 10.2.6 China
  • 10.3 Breeding for Improved Adaptation to Water-Limited and Heat Stressed Environments
  • 10.3.1 Relevant Breeding Targets
  • 10.3.2 Meaningful Genetic Diversity
  • 10.3.3 To Phenotype or Not?
  • 10.3.4 Physiological Wheat Breeding.
  • 10.3.5 Integration of Genomic Technologies in a Broader Physiological Breeding Strategy
  • 10.4 Examples of Integrating Physiological Breeding in Wheat Improvement Programs
  • 10.4.1 Defining the Environment in Northwestern NSW
  • 10.4.2 Establishing an Ideotype for Northwestern NSW
  • 10.4.3 Breeding Method - Modified Pedigree
  • 10.4.4 Breeding Method - Selected Bulk
  • 10.4.5 Breeding Method - Genomic Selection
  • 10.5 Key Concepts and Conclusions
  • References
  • Chapter 11: Wheat Quality
  • 11.1 Learning Objectives
  • 11.2 Introduction - What Is Wheat Quality?
  • 11.3 Importance of Wheat Quality - Why We Need to Breed for It
  • 11.4 Main Traits That Define Wheat Quality
  • 11.4.1 Grain Hardness
  • 11.4.2 Gluten
  • 11.4.3 Color
  • 11.4.4 Starch
  • 11.5 Genetic Control of the Quality Traits and Environmental Effects
  • 11.6 Breeding for Quality
  • 11.6.1 Integrating Quality in the Breeding Process
  • 11.6.2 Bread
  • 11.6.3 Noodles
  • 11.6.4 Cookies
  • 11.6.5 Pasta
  • 11.6.6 Molecular Markers Useful to Select for the Above-Mentioned Traits
  • 11.7 Key Concepts
  • 11.8 Conclusions
  • Further Reading
  • Chapter 12: Nutritionally Enhanced Wheat for Food and Nutrition Security
  • 12.1 Learning Objectives
  • 12.2 Introduction
  • 12.2.1 Improving Nutrition of Crops for Human Health
  • 12.2.2 Importance of a Whole Grain Diet
  • 12.2.3 Significance of Processing, Retention and Bioavailability on Nutritional Impact of Wheat
  • 12.3 Crop Improvement for Nutritional Quality
  • 12.3.1 Setting Breeding Target Levels
  • 12.3.2 Genetic Diversity for Nutritional Quality Traits
  • 12.3.3 Targeted Breeding Approach
  • 12.3.4 Genetic Architecture and Association of Nutritional Quality Traits in Wheat
  • 12.3.5 Genetic Control of Nutritional Quality Traits
  • 12.3.6 Agronomic Biofortification.
  • 12.3.7 Mainstreaming Nutritional Quality Traits in Wheat Breeding and Novel Approaches
  • 12.3.8 Speed Breeding
  • 12.3.9 Population Improvement
  • 12.3.10 Genomic Selection
  • 12.4 Product Development and Dissemination
  • 12.4.1 Adoption and Commercialization of Biofortified Wheat
  • 12.5 Key Concepts
  • 12.6 Conclusions and Future Perspectives
  • References
  • Chapter 13: Experimental Design for Plant Improvement
  • 13.1 Learning Objectives
  • 13.2 Introduction
  • 13.3 Fundamental Design Concepts
  • 13.3.1 Definitions
  • 13.3.2 Replication
  • 13.3.3 Randomization
  • 13.3.4 Blocking: Controlling for Variability
  • 13.3.5 Pseudo-Replication
  • 13.3.6 Orthogonality and Balance
  • 13.3.7 Resolvability
  • 13.3.8 Optimality Criterion
  • 13.3.9 Model Notation
  • 13.4 Classical Designs
  • 13.4.1 Treatment Structures
  • 13.4.2 Plot Structures
  • 13.4.2.1 Randomized Complete Block Designs (RCBDs)
  • 13.4.2.2 Alpha-Lattice Designs
  • 13.4.2.3 Row-Column Designs
  • 13.4.2.4 Latinized Designs
  • 13.4.2.5 Split Plot Designs
  • 13.4.2.6 Augmented Designs
  • 13.5 Model-Based Designs
  • 13.5.1 Statistical Models for Plant Improvement Experiments
  • 13.5.1.1 Analysis of Variance (ANOVA)
  • 13.5.1.2 Linear Mixed Model
  • 13.5.2 Examples
  • 13.5.2.1 Accounting for Extraneous Variation
  • 13.5.2.2 Partially Replicated Designs
  • 13.6 Summary
  • 13.7 Key Concepts
  • 13.8 Review Questions
  • References
  • Chapter 14: Seed Systems to Support Rapid Adoption of Improved Varieties in Wheat
  • 14.1 Learning Objectives
  • 14.2 Introduction: Need for Efficient Wheat Seed System and Issues That Affect Its Functioning
  • 14.3 Importance of Quality Seed in Modern Agriculture
  • 14.4 Systems of Deed Dissemination
  • 14.4.1 Formal and Informal Seed Dissemination
  • 14.4.2 Seed System in Developed Countries and UPOV
  • 14.4.3 Pre-release Seed Multiplication.
  • 14.5 Type of Varieties in Wheat and Classes of Quality Seed.