Introduction

Rumble strips are (typically periodic) grooves place at the side of the road. When a vehicle passes over a rumble strip the noise and vibration in the car should alert the driver of the imminent danger of running off the road. Thus, rumble strips have been shown to have a positive effect on traffic safety. Unfortunately, the use of rumble strips in the close vicinity of populated areas is problematic due to the increased noise burden.

Aims

The aim of the project LARS (LärmArme RumpelStreifen or low noise rumble strips) was to find rumble strip designs that cause less noise in the environment without significantly affecting the alerting effect inside the vehicle. For this purpose, a number of conventional designs as well as three alternative concepts were investigated: conical grooves to guide the noise under the car, pseudo-random groove spacing to reduce tonality and thus annoyance, as well as sinusoidal depth profiles which should produce mostly vibration and only little noise and which are already used in practice.

Methods

Two test tracks were established covering a range of different milling patterns in order to measure the effects of rumble strips for a car and a commercial vehicle running over them. Acoustic measurements using microphones and a head-and-torso-simulator were done inside the vehicle as well as in the surroundings of the track. Furthermore, the vibration of the steering wheel and the driver seat were measured. Using the acoustics measurements, synthetic rumble strip noises were produced, in order to get a wider range of possible rumble strip designs than by pure measurements.

Perception tests with 16 listeners were performed where the annoyance of the immissions as well as the urgency and reaction times for the sounds generated in the interior were determined also using the synthetic stimuli.

LARS was funded by the FFG (project 840515) and the ASFINAG. The project was done in cooperation with the Research Center of Railway Engineering, Traffic Economics and Ropeways, Institute of Transportation, Vienna University of Technology, and ABF Strassensanierungs GmbH.