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Abstract

This article investigates the effects of introducing demography into the New Economic 
Geography. We generalize the constructed capital approach, which relies on infinite individual 
planning horizons, by introducing mortality. The resulting overlapping generation framework 
with heterogeneous individuals allows us to study the effects of ageing on agglomeration 
processes by analytically identifying the level of trade costs that triggers catastrophic 
agglomeration. Interestingly, this threshold value is rather sensitive to changes in mortality. In 
particular, the introduction of a positive mortality rate makes the symmetric equilibrium more 
stable and therefore counteracts agglomeration tendencies. In sharp contrast to other New 
Economic Geography approaches, this implies that deeper integration is not necessarily 
associated with higher interregional inequality. 
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Agglomeration and population ageing in a two region model

of exogenous growth

Theresa Grafeneder-Weissteiner and Klaus Prettner

1 Introduction

The New Economic Geography literature pioneered by Krugman (1991), Venables (1996)
and Krugman and Venables (1995) provided new insights into how transport costs can de-
termine the spatial distribution of economic activity between two regions. These models
are mainly characterized by catastrophic agglomeration. Due to circular causality effects
encouraging the concentration of industrial activity, there are certain levels of transport
costs for which the symmetric equilibrium becomes unstable and the core periphery out-
come is the only stable equilibrium. Reciprocal liberalization between initially symmetric
regions that strengthens the importance of such circular causality forces thus leads to the
agglomeration of productive factors in one region. Puga (1999) set up a model that nested
as special cases both the Krugman (1991) framework with labour mobility between regions
as well as the vertically linked-industries model of Venables (1996) and Krugman and Ven-
ables (1995) without interregional labour mobility. However, the richness of agglomeration
features in these models reduced their analytical tractability. Therefore Baldwin (1999)
introduced the constructed capital framework with interregional labour and capital im-
mobility but forward-looking agents. His model also features catastrophic agglomeration.
The only force determining agglomeration is, however, the difference in the effective capi-
tal rental rates between the two regions. A higher rental rate in the home region increases
home capital accumulation, whereas capital is decumulated in the foreign region. Circu-
lar causality sets in as a higher capital stock also implies higher capital income which in
turn raises home expenditures and leads to a further increase in home rental rates. Since
neoclassical growth models in the spirit of Solow (1956) and Ramsey (1928) show that
capital accumulation is associated with faster growth in the medium run, Baldwin (1999)
describes the economy accumulating capital as a growth pole, whereas the other region
appears as a growth sink. This illustrates how economic integration in Europe could lead
to the development of “rust” and “boom belts”.

In contrast to the Ramsey (1928) framework of one single, infinitely lived, represen-
tative agent, on which the constructed capital model heavily relies, agents do not live
forever in reality. We therefore generalize Baldwin (1999)’s approach by introducing the
possibility of death and thus accounting for finite planning horizons. In doing so, we adopt
Blanchard (1985)’s structure of overlapping generations, where heterogeneity among in-
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dividuals is due to their date of birth. While still following the lines of intertemporally
optimizing agents, this results in a more realistic model incorporating life-cycle decisions
and nesting the constructed capital model as a special case. Most notably, it allows us to
study the effects of ageing on agglomeration processes between two regions.

Our results indicate that Baldwin (1999)’s agglomeration induced growth finding only
applies in the very special case of infinitely lived individuals. In particular, we show that
under a more realistic mortality assumption the possibility of the symmetric equilibrium
to be unstable is considerably reduced such that agglomeration processes may not set
in even if economic integration is promoted up to a high degree. Lifetime uncertainty
therefore acts as a dispersion force that countervails the circular causality effects present
in our framework.

The paper proceeds as follows. Section 2 presents the structure of the model and
the optimization problems of individuals and firms. Section 3 verifies the existence of
a symmetric long-run equilibrium and characterizes its properties. Section 4 analyses
the stability of this long-run equilibrium with positive mortality and compares them to
the results of Baldwin (1999) without mortality. By calibrating the model for reasonable
values of the parameters, we complement our analytical findings by numerical illustrations.
Finally, section 5 summarizes and draws conclusions for economic policy.

2 The model

This section describes how we integrate Blanchard (1985)’s notion of mortality into the
constructed capital framework of Baldwin (1999). Consumption and savings behaviour as
well as production technologies are introduced and various intermediate findings resulting
from profit maximization are presented. In order to be able to analyse the long-run
equilibrium, we also derive aggregate law of motions for capital and expenditures.

2.1 Basic structure and underlying assumptions

The model consists of two regions or countries, referred to as H for home and F for for-
eign1, with symmetric production technologies and preferences of individuals as well as
identical labour endowments and demographic structures. Each region has three economic
sectors (agriculture, manufacturing and investment) with two immobile factors (labour L

and capital K) at their disposal. The homogeneous agricultural good, n, is produced in a
perfectly competitive market with labour as the only input and can be traded between the
two regions without any costs. Manufacturing firms are modelled as in the monopolistic
competition framework of Dixit and Stiglitz (1977) and therefore produce varieties, de-
noted as m, with one unit of capital as fixed input and labour as the variable production
factor. A continuum of varieties i ∈ (0, VH ] of all manufacturing goods is produced at
home, whereas a continuum of varieties j ∈ (0, VF ] is manufactured in the foreign region.

1If further distinction is needed, foreign variables are moreover indicated by an asterisk.
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In contrast to the agricultural good, trade of manufactures involves iceberg transport costs
such that ϕ ≥ 1 units of the differentiated goods have to be shipped in order to sell one
unit abroad (see for example Baldwin et al. (2003)). In the Walrasian investment sector
capital is produced using labour as the only input with a time independent, exogenous
unit input coefficient F where wages are paid out of the individuals’ savings. The failure
rate of a machine is assumed to be independent of the machine’s age. Denoting this failure
rate as 0 < δ ≤ 1, and using the law of large numbers, implies that the overall depreciation
rate of capital is given by δ as well.

As far as the demographic structure of our model economy is concerned, we closely
follow Blanchard (1985)’s simplified setting. We assume that at each point in time,
τ ∈ [0,∞), a large cohort consisting of finitely many individuals is born. The size
of this cohort is N(τ, τ) = μN(τ), where 0 < μ ≤ 1 is the constant birth rate and
N(τ) ≡ ∫ τ

−∞ N(t0, τ)dt0 is total population at time τ with N(t0, τ) denoting the amount
of individuals born at t0 for a given point in time τ .2 Consequently, cohorts can be dis-
tinguished by the birth date t0 of their members. Since there is no heterogeneity between
members of the same cohort, each cohort can be described by one representative indi-
vidual, who inelastically supplies his efficiency units of labour at the labour market with
perfect mobility across sectors but immobility between regions. The age of the individual
is given by a = τ − t0 and his time of death is stochastic with an exponential probability
density function. In particular, the probability of death is given by the constant, i.e. age
independent, parameter μ resulting in a surviving probability to age τ − t0 of e−μ(τ−t0).
Since the population size is large, the frequency of dying is equal to the instantaneous
mortality rate. Therefore the number of deaths at each instant in time is also μN(τ).
As this equals, by assumption, the number of births, population size is constant and can
be normalized to unity (N(τ)=1). Finally, as in Yaari (1965), a perfect life-insurance
company offers actuarial notes, which can be bought or sold by each individual and are
cancelled upon the individual’s death.

2.2 The individual’s utility optimization problem

The following discussion refers to the home economy but due to symmetry between the
two regions, equivalent equations also hold abroad. Individuals have Cobb-Douglas pref-
erences over the agricultural good and a CES composite of manufacturing goods. Based
on the assumptions of section 2.1 the representative individual of cohort t0 maximizes
his expected lifetime utility U(t0, t0)3 at time t0. He therefore chooses at each instant
τ > t0 consumption of the agricultural good, cn(t0, τ), consumption of varieties produced
at home, cH

m(i, t0, τ), and consumption of varieties produced abroad, cF
m(j, t0, τ), according

2In what follows the first time index of a variable will refer to the birth date, whereas the second will
indicate a certain point in time.

3It is easy to show that the objective in equation (1) can be derived via calculating expected lifetime
utility, where the time of death is a random variable with an exponential probability density function
parametrized by a constant instantaneous mortality rate μ.
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to the maximization problem

max
cn,cH

m,cF
m

∫ ∞

t0

e−(ρ+μ)(τ−t0) ln
[
(cn(t0, τ))1−ξ(cagg

m (t0, τ))ξ
]
dτ, (1)

where 0 < ρ ≤ 1 is the pure rate of time preference, 0 < ξ < 1 is the manufacturing share
of consumption and

cagg
m (t0, τ) ≡

[∫ VH(τ)

0

(
cH
m(i, t0, τ)

)σ−1
σ di +

∫ VF (τ)

0

(
cF
m(j, t0, τ)

)σ−1
σ dj

] σ
σ−1

represents consumption of the CES composite of manufactured goods with σ > 1 denoting
the elasticity of substitution between varieties.

Individual savings, defined as income minus consumption expenditures, are converted
into capital in the investment sector with a labour input coefficient of F . Taking this into
account, the wealth constraint of a representative individual can be written as

k̇(t0, τ) =
w(τ)l(t0, τ) + π(τ)k(t0, τ) − e(t0, τ)

w(τ)F
+ μk(t0, τ) − δk(t0, τ), (2)

where w(τ) denotes the wage per efficiency unit of labour, l(t0, τ) refers to the efficiency
units of labour the representative individual of cohort t0 supplies, π(τ) is the capital
rental rate, k(t0, τ) the capital stock of an individual and e(t0, τ) are an individual’s total
expenditures for consumption given by

e(t0, τ) ≡ pn(τ)cn(t0, τ) +
∫ VH(τ)

0
pH

m(i, τ)cH
m(i, t0, τ)di +∫ VF (τ)

0
pF

m,ϕ(j, τ)cF
m(j, t0, τ)dj.

Here pn(τ) is the price of the agricultural good, pH
m(i, τ) the price of a manufactured

variety produced at home and pF
m,ϕ(j, τ) the price of a manufactured variety produced

abroad with the subscript ϕ indicating the dependence on transport costs.
The particular law of motion for capital given above in equation (2) is based on Yaari

(1965)’s full insurance result implying that all individuals only hold their wealth in the
form of actuarial notes.4 Therefore the market rate of return on capital, π(τ)

w(τ)F − δ, has to
be augmented by μ to obtain the fair rate on actuarial notes (cf. Yaari (1965)).

In appendix A we solve the individual’s utility optimization problem by applying a
three stage procedure. In the first stage the dynamic savings-expenditure decision is
analysed. Stage two deals with the static optimal consumption allocation between the
CES composite and the agricultural good and in stage three individuals decide upon the
amount of consumption they allocate to each of the manufactured varieties. Altogether

4Two interpretations of the capital accumulation process are therefore possible. Either each individual
itself converts its savings into capital and then leaves it to the insurance company or savings are immediately
transferred to the insurance company which converts them into machines by employing workers.
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this leads to the following demand functions for the agricultural good and for each of the
manufactured varieties

cn(t0, τ) =
(1 − ξ)e(t0, τ)

pn(τ)
, (3)

cH
m(i, t0, τ) =

ξe(t0, τ)(pH
m(i, τ))−σ[∫ VH(τ)

0 (pH
m(i, τ))1−σdi +

∫ VF (τ)
0 (pF

m,ϕ(j, τ))1−σdj
] , (4)

cF
m(j, t0, τ) =

ξe(t0, τ)(pF
m,ϕ(j, τ))−σ[∫ VH(τ)

0 (pH
m(i, τ))1−σdi +

∫ VF (τ)
0 (pF

m,ϕ(j, τ))1−σdj
] (5)

as well as to the consumption Euler equation for the representative individual of cohort t0

ė(t0, τ)
e(t0, τ)

=
π(τ)

Fw(τ)
− δ − ρ. (6)

As first shown by Yaari (1965) the representative individual’s Euler equation with fully
insured lifetime uncertainty is identical to the Euler equation when no lifetime uncertainty
exists, i.e. the individual Euler equation does not include the mortality rate.

2.3 Aggregate expenditures and capital

Due to the overlapping generations structure resulting from the introduction of mortality
into the constructed capital framework, our model set-up does not feature one single
representative individual. In order to be able to analyse the long-run equilibrium of the
economy as well as its stability properties it is therefore necessary to derive the aggregate
law of motions of capital and consumption expenditures. The capital stock of the economy
at a certain point in time t is the aggregate of individual capital stocks integrated over all
birth dates. Analogous definitions apply to consumption expenditures and the available
efficiency units of labour. These aggregation rules are formally given by

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (7)

E(t) ≡
∫ t

−∞
e(t0, t)N(t0, t)dt0, (8)

L(t) ≡
∫ t

−∞
l(t0, t)N(t0, t)dt0, (9)

where K(t) is the aggregate capital stock, L(t) refers to the total amount of available effi-
ciency units of labour and E(t) denotes aggregate consumption expenditures. Equivalent
equations hold for the foreign region.

Using the demographic assumptions described in section 2.1 we can exactly trace the
size N(t0, t) of any particular cohort over time. A cohort born at time t0 is of size μe−μ(t−t0)

at time t ≥ t0 as the probability of surviving to time t equals e−μ(t−t0) and the initial size
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of the cohort is μ. Substituting for N(t0, t) in equation (8) therefore yields

E(t) ≡ μ

∫ t

−∞
e(t0, t)e−μ(t−t0)dt0. (10)

The aggregate Euler equation directly follows from equation (10) by differentiating it with
respect to t and then substituting for ė(t0, t) from the individual Euler equation (6) and
for e(t, t) and E(t) from the corresponding expressions derived in appendix B where we
describe the various aggregation steps in detail.5 It is given by

Ė(t)
E(t)

= −μ(ρ + μ)Fw(t)
K(t)
E(t)

+
π(t)

w(t)F
− ρ − δ (11)

= −μ
E(t) − e(t, t)

E(t)
+

ė(t0, t)
e(t0, t)

. (12)

This aggregate Euler equation, modified for the existence of overlapping generations of
finitely lived agents, is identical to the individual Euler equation given in expression (6)
except for an additional correction term resulting from the distributional effects caused
by the turnover of generations (cf. Heijdra and van der Ploeg (2002), chapter 16). Opti-
mal consumption expenditure growth is the same for all generations but older generations
have a higher consumption expenditure level than younger generations because they are
wealthier. Since newborns with no capital holdings continually replace dying old genera-
tions, aggregate consumption expenditure growth is smaller than individual consumption
expenditure growth. The correction term on the right hand side of equation (11) therefore
describes the difference between average consumption expenditures6 and consumption ex-
penditures by newborns as shown in equation (12). As E(t) − e(t, t) is unambiguously
positive, a higher mortality rate decreases aggregate consumption expenditure growth.
This is intuitively clear as a higher μ implies a higher generational turnover and there-
fore a higher (negative) impact of the correction term, and it is also consistent with the
life-cycle savings literature (see for example Gertler (1999)).

Similarly, the aggregate law of motion for the capital stock can be obtained. Rewriting
equation (7) in analogy to equation (10) and then differentiating it with respect to t yields

K̇(t) =
[

π(t)
w(t)F

− δ

]
K(t) +

w(t)L(t)
w(t)F

− E(t)
w(t)F

, (13)

where we applied the same steps as in the derivation for the aggregate Euler equation shown
in appendix B.7 Compared to the law of motion for individual capital there appears no
term featuring the mortality rate μ. This captures the fact that μK(t) does not represent
aggregate capital accumulation but is a transfer - via the life insurance company - from

5Those aggregation steps closely follow the ones described by Heijdra and van der Ploeg (2002) in
chapter 16.

6Since we normalized total population size to 1, total consumption expenditures E(t) are equal to
average consumption expenditures.

7In particular, we substituted for k̇(t0, t) from equation (2).

6



individuals who died to those who survived within a given cohort. As a consequence,
aggregate capital accumulates at a rate π(t)

w(t)F − δ, whereas individual capital attracts the

actuarial interest rate π(t)
w(t)F + μ − δ for surviving individuals (cf. Heijdra and van der

Ploeg (2002), chapter 16).
Summarizing, the mortality rate μ enters the law of motion for the individual capital

stock but disappears in the corresponding aggregate law of motion. This is in sharp
contrast to the Euler equation, where we have seen that μ does not show up at the
individual level but is part of the aggregate consumption expenditure growth rate.

2.4 Production technology and profit maximization

Profit maximization in the manufacturing and agricultural sector closely follows Baldwin
(1999) and yields various intermediate results that simplify the subsequent analysis of the
long-run equilibrium. In particular, the way the manufacturing sector is modelled allows
us to derive the rental rate of capital as a function of home and foreign capital stocks and
expenditures.

2.4.1 Agricultural sector

The homogeneous agricultural good, which can be interpreted as food, is produced ac-
cording to the following constant returns to scale production function

Yn(t) =
1
α

Ln(t), (14)

where Yn(t) denotes output of the agricultural sector, Ln(t) represents aggregate labour
devoted to agricultural production, and α is the unit input coefficient in the production of
agricultural goods. Free trade of the agricultural good between home and foreign equalizes
its price as long as each of the two regions produces some Yn(t). This can be shown to hold
if ξ, the manufacturing share of consumption, is not too large (cf. Baldwin (1999)) which
will be assumed from now on. Profit maximization under perfect competition implies that
firms charge the following price which equals marginal costs

pn(t) = αwn(t). (15)

Since labour is perfectly mobile across sectors the wage rate in the economy w(t) satisfies

wn(t) = wm(t) = winv(t) = w(t), (16)

where wn(t), wm(t) and winv(t) denote wages in the agricultural, manufacturing and in-
vestment sector. Therefore equation (15) pins down equilibrium wages which are equalized
across regions due to free trade. Moreover, by choice of units for agricultural output, α

can be set to one implying that the wage rate is equal to the price of the agricultural good.
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Finally, choosing the agricultural good as numeraire leads to

w(t) = w∗(t) = 1. (17)

2.4.2 Manufacturing sector

Each firm in the Dixit and Stiglitz (1977) monopolistically competitive manufacturing
sector produces a different output variety using labour as variable and one variety-specific
machine as fixed input. This machine originates from the investment sector and is equiva-
lent to one unit of capital. Due to the fixed costs, firms face an increasing returns to scale
production technology with an associated cost function

π(t) + w(t)βYm(i, t), (18)

where β is the unit input coefficient for efficiency units of labour, Ym(i, t) is total output of
one manufacturing good producer and the capital rental rate π(t) represents the fixed cost.
Since we have variety specificity of capital and free entry into the manufacturing sector
driving pure profits down to zero, this capital rental rate is equivalent to the Ricardian
surplus, i.e. the operating profit of each manufacturing firm. In particular, the insurance
companies, which hold all the capital (cf. section 2.2), rent their capital holdings to the
manufacturing firms and can fully extract all profits.

Defining8 Pm(t) ≡ ∫ VH(t)
0 (pH

m(i, t))1−σdi +
∫ VF (t)
0 (pF

m,ϕ(j, t))1−σdj and P ∗
m(t) ≡∫ VF (t)

0 (pH
m(j, t))1−σdj +

∫ VH(t)
0 (pF

m,ϕ(i, t))1−σdi and recognizing that each individual firm
has mass zero and hence does not influence the price indexes Pm and P ∗

m, leads to the
following maximization problem for each firm at time t9

max
pH

m,pF
m,ϕ

(pH
m(i, t) − w(t)β)

(∫ t

−∞
cH
m(i, t0, t)N(t0, t)dt0

)

+(pF
m,ϕ(i, t) − w(t)ϕβ)

(∫ t

−∞
cH∗
m (i, t0, t)N∗(t0, t)dt0

)

s.t. cH
m(i, t0, t) =

ξe(t0, t)(pH
m(i, t))−σ

Pm(t)

cH∗
m (i, t0, t) =

ξe∗(t0, t)(pF
m,ϕ(i, t))−σ

P ∗
m(t)

. (19)

8Note that p∗H
m (i, t) = pF

m,ϕ(i, t) and p∗F
m (j, t) = pH

m(j, t) due to symmetry between the two regions,
where p∗H

m (i, t) is the price of a good manufactured in the home economy but sold in the foreign region.
9We ignore fixed costs in the derivations here as they do not influence the first order conditions.

Therefore we just maximize operating profits defined as revenues from selling the variety to the home and
foreign region minus variable production costs (taking into account the effect of transport costs).
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Carrying out the associated calculations shown in appendix C gives expressions for optimal
prices

pH
m(i, t) =

σ

σ − 1
w(t)β, (20)

pF
m,ϕ(i, t) =

σ

σ − 1
w(t)βϕ. (21)

Therefore the profit maximization problem yields the familiar rule that prices are equal to
a constant mark-up over marginal costs which decreases in σ. This implies that a higher
elasticity of substitution reduces the market power of manufacturing firms. Moreover,
mill pricing is optimal, i.e. the only difference between prices in the two regions is due to
transport costs (cf. Baldwin et al. (2003)).

Using the first order conditions of the maximization problem formulated in equation
(19) (see appendix C as well as Baldwin (1999) for details of the following derivations)
and defining

sH
H(t) ≡ pH

m(t)
∫ t
−∞ cH

m(t0, t)N(t0, t)dt0∫ t
−∞ ξe(t0, t)N(t0, t)dt0

, (22)

sF
H(t) ≡ pF

m,ϕ(t)
∫ t
−∞ cH∗

m (t0, t)N∗(t0, t)dt0∫ t
−∞ ξe∗(t0, t)N∗(t0, t)dt0

(23)

as the share of a domestic firm in the home and in the foreign market with equivalent
definitions holding for sF

F (t) and sH
F (t) gives rental rates in the home and foreign region as

π(t) =
ξ

σ

[∫ t

−∞
sH

H(t)e(t0, t)N(t0, t)dt0 +
ξ

σ

∫ t

−∞
sF

H(t)e∗(t0, t)N∗(t0, t)dt0

]
,

(24)

π∗(t) =
ξ

σ

[∫ t

−∞
sF

F (t)e∗(t0, t)N∗(t0, t)dt0 +
ξ

σ

∫ t

−∞
sH

F (t)e(t0, t)N(t0, t)dt0

]
.

(25)

Again using mill pricing and redefining global quantities and regional share variables leads
to the final expressions for regional rental rates10

π =
(

θE

θK + φ(1 − θK)
+

(1 − θE)φ
φθK + 1 − θK

)
︸ ︷︷ ︸

Bias

(
ξEW

σKW

)
, (26)

π∗ =
(

1 − θE

1 − θK + φθK
+

θEφ

φ(1 − θK) + θK

)
︸ ︷︷ ︸

Bias∗

(
ξEW

σKW

)
, (27)

where φ ≡ ϕ1−σ is a measure of openness between the two regions with φ = 0 indicating
prohibitive trade barriers and φ = 1 free trade. World expenditures are defined as EW ≡

10We ignore time arguments here.
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E +E∗ and the world capital stock as KW ≡ K +K∗ with θK and θE being the respective
home shares of these quantities, i.e. θK ≡ K

K+K∗ and θE ≡ E
E+E∗ . As expected, these

rental rates are identical to those derived in Baldwin (1999)’s constructed capital model,
since the introduction of mortality does not change the production side of the economy.
Analogously to Baldwin (1999), the terms labelled Bias and Bias∗ can be interpreted as
the bias in national sales, i.e. Bias measures the extent to which a home variety’s sales
exceed the world average sales per variety. Additionally, these terms describe the impact
of production and expenditure shifting on profits. In the symmetric case with θK = 1/2
and θE = 1/2, shifting expenditure to home (dθE > 0) raises π and lowers π∗ since it
increases the market size at home. Production shifting11 to home (dθK > 0), on the other
hand, has the opposite impact as it increases competition in the home market. It can be
shown that lowering trade costs weakens the magnitude of both effects but erodes the local
competition effect more rapidly. Consequently, agglomerative tendencies gain weight as
integration between the two regions is increased. The crucial question to be investigated
in the following sections is whether these agglomerative tendencies are strong enough to
create a core periphery outcome with all capital, and thus all manufacturing firms, located
in one region which is the case in the constructed capital model of Baldwin (1999).

3 Long-run equilibrium

The dynamics of this neoclassical growth model with overlapping generations are fully
described by the following four dimensional system in the variables E, E∗, K and K∗

whose equations were derived in section 2.3 and are given by12

K̇ =
[

ξ

σF

(
E

K + φK∗ +
φE∗

φK + K∗

)
− δ

]
K +

L

F
− E

F
, (28)

Ė = −μ(ρ + μ)FK + E

[
ξ

σF

(
E

K + φK∗ +
φE∗

φK + K∗

)
− ρ − δ

]
, (29)

K̇∗ =
[

ξ

σF

(
E∗

K∗ + φK
+

φE

φK∗ + K

)
− δ

]
K∗ +

L

F
− E∗

F
, (30)

Ė∗ = −μ(ρ + μ)FK∗ + E∗
[

ξ

σF

(
E∗

K∗ + φK
+

φE

φK∗ + K

)
− ρ − δ

]
.

(31)

Here we used that the equilibrium wage rate is equal to one in both regions and we already
substituted for the rental rates from equations (26) and (27).13 For the special case of
μ = 0 this system of equations is exactly identical to the one obtained by Baldwin (1999)
with an infinitely lived representative agent.

11Note that the number of varieties in the home region, VH(t), is equal to the capital stock at home,
K(t), as one variety exactly requires one unit of capital as fixed input (analogously K∗(t) ≡ VF (t)). This
implies that capital accumulation in one region is tantamount to firm creation.

12We again suppress time arguments here.
13Note also that due to the assumption of symmetric regions we have L = L∗ and μ = μ∗ as well as

F = F ∗, δ = δ∗, ρ = ρ∗, ξ = ξ∗ and σ = σ∗.
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A long-run equilibrium of this model characterized by the steady-state values Ē, K̄,
Ē∗ and K̄∗ must fulfil the system with the left hand side set equal to zero. It can be
verified14 that the symmetric outcome with K = K∗ and E = E∗ has this property with
the steady-state values given by15

Ēsym =
Lσ

(
σδ2 + ρσδ − 2μ(μ + ρ)(σ − ξ) + δ

√
σ
√

σ(δ + ρ)2 + 4μ(μ + ρ)ξ
)

2(δσ + (μ + ρ)(σ − ξ))(δσ + μ(ξ − σ))
,

(32)

K̄sym =
δLσ(σ + ξ) + L

√
σ(σ − ξ)

(
ρ
√

σ − √
σ(δ + ρ)2 + 4μ(μ + ρ)ξ

)
2F (δσ + (μ + ρ)(σ − ξ))(δσ + μ(ξ − σ))

.

(33)

Investigating how these steady-state values of consumption expenditures and capital react
to varying mortality rates reveals some interesting features. The signs of the corresponding
derivatives with respect to μ are, however, analytically ambiguous. We therefore evaluated
them at the following parameter values: μ = 0.0125 resulting in a life expectancy of
80 years16, δ = 0.05 implying that capital depreciates on average after 20 years, ρ =
0.015, which is the value used by Auerbach and Kotlikoff (1987), and L = 1 and F = 2.
Since there is considerable disagreement about the parameter values of σ and ξ in the
literature, we used a wide range of plausible values in our numerical calculations. As far
as the former is concerned, a plausible lower bound is σ = 2 as in Baldwin (1999). Most
authors, however, consider σ ≈ 4 (cf. Bosker and Garretsen (2007), Brakman et al. (2005),
Krugman (1991), Krugman and Venables (1995), Martin and Ottaviano (1999) and Puga
(1999)). In order to allow for all possibilities we choose as an upper bound σ = 8. With
respect to ξ, which in fact describes the share of consumption expenditures for the good
produced under increasing returns to scale (relative to the good produced under constant
returns to scale), Head and Mayer (2003), Bosker and Garretsen (2007) and Puga (1999)
consider a value of ξ = 0.1, Baldwin (1999) and Krugman (1991) set ξ = 0.3, Krugman
and Venables (1995) choose ξ = 0.6 and Martin and Ottaviano (1999) set ξ = 0.8. We
therefore consider a possible parameter range of 0.1 ≤ ξ ≤ 0.9 to account for this wide
spread.17

Figure 1 and 2 reveal that for those parameter ranges the derivative of Ēsym with
respect to μ is positive, whereas the derivative of K̄sym is negative.18 Consequently,

14This and most other results were derived with Mathematica. The corresponding files are available
from the authors upon request.

15Solving the system for the symmetric equilibrium values in fact yielded two solution pairs. As one of
them gives negative equilibrium expenditures for plausible parameter values we restrict our attention to
the economically meaningful solution pair.

16Since the probability of death during each year equals 0.0125, average life expectancy is 1
0.0125

.
17Recall, however, that production of the agricultural good in both regions requires ξ to be sufficiently

small.
18We also investigated the derivatives for varying mortality rates. Assuming 0.008 ≤ μ ≤ 0.025 leading

to a life expectancy between 40 and 120 years, and still considering the aforementioned values for the other
parameters, does not change our findings.
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Figure 1: Derivative of Ēsym with respect to μ

Figure 2: Derivative of K̄sym with respect to μ
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a decrease in the mortality rate increases the equilibrium capital stock and decreases
equilibrium expenditures, which is intuitively clear as a lower mortality rate increases
the proportion of elderly to young individuals. Since the former hold more capital, the
aggregate capital stock increases. This result is again consistent with the life-cycle savings
literature (cf. Gertler (1999), Futagami and Nakajima (2001) and Zhang et al. (2003)).

When considering the effect of the mortality rate on the steady-state consumption
expenditure share19, Ēsym

δK̄sym+Ēsym
, even analytical results can be derived. This share is

obtainable from the ratio of the equilibrium capital stock to the equilibrium expenditures20

K̄sym

Ēsym
=

2ξ

F (δσ + ρσ +
√

σ
√

σ(δ + ρ)2 + 4μ(μ + ρ)ξ)
, (34)

which obviously depends negatively on the mortality rate. The steady-state consumption
expenditure share therefore increases with μ. This again illustrates that a higher mortality
rate decreases savings and therefore increases consumption relative to income.

4 Symmetric equilibrium stability -

The impact of introducing mortality on catastrophic ag-

glomeration

New Economic Geography models emphasize that reciprocal liberalization between ini-
tially symmetric regions leads to catastrophic agglomeration. In this section we show that
the introduction of mortality considerably reduces this possibility of the symmetric equi-
librium to be unstable such that agglomeration processes may not set in even if economic
integration is promoted up to a high degree.

4.1 Analytical results

The stability properties of the symmetric long-run equilibrium for varying trade costs and
mortality rates are analysed by following the classical approach (cf. Barro and Sala-i-
Martin (2004)) of linearising the non-linear dynamic system given in equations (28), (29),
(30) and (31) around the symmetric equilibrium and then by evaluating the eigenvalues
of the corresponding 4 × 4 Jacobian matrix

Jsym =

(
J1 J2
J3 J4

)
, (35)

19This share is defined as equilibrium consumption expenditures divided by steady-state income, where
steady-state income is the sum of replacement investment, δK (equal to savings in steady-state), and
consumption expenditures.

20Simply calculate 1
δK̄sym
Ēsym

+1
.
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where the four symmetric 2 × 2 sub-matrices Ji for i = 1, . . . 4 are given in appendix D.
Solving the characteristic equation yields the following four eigenvalues

eig1 =
1
2
(real1 −

√
rad1), (36)

eig2 =
1
2
(real1 +

√
rad1), (37)

eig3 =
1

(φ + 1)2
√

σ
(real2 −

√
rad2), (38)

eig4 =
1

(φ + 1)2
√

σ
(real2 +

√
rad2), (39)

where

real1 ≡ A√
σ
− δ,

rad1 ≡
(

A√
σ

+ δ

)2

+
(σ − ξ)

(
(A + B)2 + 4μ(μ + ρ)ξ

)
σξ

,

real2 ≡ 3φA + A −√
σ

(
δ
(
2φ2 + φ + 1

)
+ (φ − 1)φρ

)
,

rad2 ≡ (
A(φ − 1) + (δ(φ − 1) + φ(φ + 3)ρ)

√
σ
)2 +

(φ + 1)(φσ + σ + φξ − ξ)
(
(A + B)2(φ − 1)2 + 4μ(φ + 1)2(μ + ρ)ξ

)
ξ

,

with the parameter clusters A ≡ √
σ(δ + ρ)2 + 4μ(μ + ρ)ξ as well as B ≡ (δ + ρ)

√
σ. The

signs and nature of these eigenvalues fully characterize the system’s local dynamics around
the symmetric equilibrium. Analytically investigating them21 thus results in lemma 1.

Lemma 1. Eigenvalue 3 is decisive for the local stability properties of the symmetric
equilibrium. A positive eigenvalue 3 implies instability, a negative one saddle path stability.

Proof. By investigating the expressions for the eigenvalues it is first easily established that
all of them are real. This holds since their radicals are non-negative for σ > ξ which is true
for all parameter ranges considered22. Convergence to or divergence from the symmetric
equilibrium is therefore monotonic.

As there are two jump variables E and E∗, saddle path stability prevails if and only if
there are two negative eigenvalues. If fewer than two eigenvalue are negative, the system is
locally unstable. By inserting the expression for A, it is easily established that real1 > 0.
We can therefore immediately conclude that eigenvalue 2 is positive for all parameter
values. In order to find out the sign of eigenvalue 1, we compare the real term with
the corresponding term under the radical. The square of the former is smaller than the
latter, implying that eigenvalue 1 is always negative. It remains to investigate the signs
of eigenvalues 3 and 4. Again we first check whether the real part is non-negative for all

21In order to get a first idea about the signs and nature of the eigenvalues, we also calibrated the model
and investigated the eigenvalues numerically. The corresponding findings are presented in appendix D.

22Recall the parameter ranges σ > 1, 0 < δ ≤ 1, 0 < ρ ≤ 1, 0 < μ ≤ 1, 0 < ξ < 1 and 0 ≤ φ ≤ 1 which
imply that A > 0 and B > 0.
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Figure 3: Eigenvalue 3 for varying trade costs given μ = 0.0001

parameter values. By inserting the expression for A, real2 can be rewritten as

real2 = −√
σδ

(
2φ2 + φ + 1

)︸ ︷︷ ︸
term1

+
√

σ(1 − φ)φρ︸ ︷︷ ︸
term2

+

(1 + 3φ)
√

σ(δ + ρ)2 + 4μ(μ + ρ)ξ︸ ︷︷ ︸
term3

. (40)

All three terms are increasing in ρ, ξ and μ but react differently to changes in φ, δ and σ.
In order to show that real2 is nevertheless non-negative for all parameter values we set ρ,
ξ and μ close to zero resulting in the “worst”, i.e. most negative, outcome with respect
to these parameters and then check for which values of φ, δ and σ the above real part is
still positive by solving the corresponding system of inequalities. We find that this holds
for the whole parameter space implying that the fourth eigenvalue is definitely positive.
Summarizing, we have established that eigenvalue 2 and 4 are always positive, whereas
eigenvalue 1 is always negative. This proves the crucial role of the third eigenvalue.

Having demonstrated that changes in the parameter values, and in particular of the
mortality rate, can only influence the stability properties of the symmetric equilibrium
via eigenvalue 3, it is immediate to investigate this eigenvalue more thoroughly. Figure 3
plots eigenvalue 3 as a function of φ for μ = 0.0001 given our choice of the most plausible
values of the other parameters (ρ = 0.015, δ = 0.05, ξ = 0.3 and σ = 4). The graph shows
that, depending on the level of trade costs, eigenvalue 3 is either positive or negative.23

The crucial question, however, is whether changes in the mortality rate also influence the
sign of eigenvalue 3.

23The numerical investigation of eigenvalue 3 in appendix D also reveals that it is impossible to come
up with a definite sign for the whole parameter space.
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Proposition 1. The sign of eigenvalue 3 and hence saddle path stability of the symmetric
equilibrium depends on the mortality rate.

Proof. To prove this proposition, we use the concept of the critical level of trade costs
φbreak. This threshold value identifies the degree of openness where eigenvalue 3 changes
its sign and therefore where the stability properties of the symmetric equilibrium change
(cf. where eigenvalue 3 crosses the horizontal axis in figure 3). To analytically obtain
φbreak we set the expression for the third eigenvalue equal to zero and solve the resulting
equation. This yields two solutions for φbreak as functions of the other parameters.24

Since these two critical levels in particular also depend on the mortality rate, proposition
1 holds.

4.2 The impact of mortality on catastrophic agglomeration

Using the results obtained in the previous section 4.1 we are now ready to investigate the
effects of ageing on catastrophic agglomeration. Most notably, we will show that a realistic
mortality rate rules out the possibility of instability of the symmetric equilibrium in the
constructed capital model of Baldwin (1999).

Figure 4, which plots the contour lines of eigenvalue 3 for for varying μ and φ25 given
our choice of the most plausible values of the other parameters (ρ = 0.015, δ = 0.05,
ξ = 0.3 and σ = 4), illustrates that there only exists a very small range of combinations
of μ and φ where the sign of the third eigenvalue is positive. This instability region is
characterized by parameter combinations inside the contour line=0 which yield a non-
negative eigenvalue 3. Higher transport costs26 or a higher mortality rate decrease the
value of eigenvalue 3 rather quickly. Only in case of an implausibly low mortality rate it is
possible to find critical values of transport costs within which the symmetric equilibrium
becomes unstable and agglomeration can set in.

Similar conclusions are obtained from investigating how the critical level of trades
costs reacts to changes in the mortality rate. Without mortality, i.e. μ = 0, and the
parameter values assumed by Baldwin (1999), i.e. ρ = δ = 0.1, ξ = 0.3 and σ = 2, the
two critical levels of trade costs are φbreak1 = 0.860465 and φbreak2 = 1.27 In between
those values, i.e. for sufficiently low levels of trade costs, the symmetric equilibrium is
unstable and catastrophic agglomeration does occur. Allowing μ to be positive, however,
and still assuming the same values as Baldwin (1999) for the other parameters, establishes
that φbreak1 increases, while φbreak2 decreases with μ (cf. figure 5). The range where the
symmetric equilibrium is unstable clearly shrinks (in figure 3 an increase in μ would thus
shift eigenvalue 3 downwards). A higher mortality rate therefore stabilizes the symmetric
equilibrium and prevents the two regions from unequal development. In particular, we can

24As the expressions are rather cumbersome they are not presented here but available upon request.
25Note that we plot this figure only for μ > 0.005 and φ > 0.85 which indicates how small the instability

region relative to the whole parameter range is.
26Remember that a lower value of φ is equivalent to higher transport costs.
27These values are exactly identical to those obtained by Baldwin (1999).
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Figure 4: Contour plot of eigenvalue 3

establish that for μ > 0.00395, implying a (plausible) life expectancy of less than approxi-
mately 250 years, there exists no level of trade costs such that the symmetric equilibrium
is unstable (i.e. the downward shift in figure 3 is such that eigenvalue 3 does not cross the
horizontal axis anymore where it would become positive28).29 In sharp contrast to Bald-
win (1999)’s catastrophic agglomeration result, our model thus predicts the symmetric
outcome to be the dominating one even in the presence of high economic integration. The
introduction of finitely lived individuals profoundly stabilizes the symmetric equilibrium.

4.3 Economic intuition

One immediate question refers to how and why the mortality rate influences the forces in
our model that determine the stability properties of the symmetric equilibrium. As shown
by Baldwin (1999), the formal stability analysis pursued in section 4.1 yields the same
results as compared to a more informal way of checking the stability of the symmetric
equilibrium. This informal way is based on investigating how an exogenous perturbation
of the home share of capital, θK , influences the profitability of home-based firms relative to

28Note that we have already plotted figure 3 for a very low mortality rate μ = 0.0001 to illustrate a case
where it crosses the axis.

29We also performed these simulations with respect to the critical level of trade costs for other parameter
ranges, in particular for our choice of the most plausible values, ρ = 0.015, δ = 0.05, ξ = 0.3 and σ = 4.
In this case the critical mortality rate, above which the symmetric equilibrium is always stable, is given
by μ = 0.00028. This implies that if we (realistically) assume a life expectancy of less than approximately
3500 years we never get instability.
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Figure 5: φbreak1 (dashed) and φbreak2 (solid) as a function of μ

foreign-based firms. A positive impact would imply instability as even more firms would
locate in the home region. Conducting this more informal stability analysis can yield
valuable insights into the forces fostering or weakening agglomeration in our model.

The main mechanism behind all agglomeration tendencies is the following demand
linked circular causality between consumption expenditures and capital: If expenditures
in one region are exogenously increased, this implies higher profits such that more firms
enter the market, leading to a higher capital stock in the region. The higher capital
stock is associated with higher income and therefore further increases expenditures and
profitability. This agglomeration force was first introduced by Baldwin (1999) and is
due to the endogeneity of capital in his model. It hinges critically on the immobility of
capital as only in this case capital income cannot be repatriated to its immobile owners
and therefore increases the region’s own income. In our model with capital immobility
it is, however, indeed the case that the equilibrium value of consumption expenditures
depends, via this income effect, on the capital stock. If stability of the symmetric equi-
librium is now investigated by the informal approach mentioned above, this particular
equilibrium reaction must be taken into account. Therefore the sign of the derivative
(dπ/dθK)equ ≡ dπ[θK , θ̄E [θK ];φ]/dθK

30 evaluated at the symmetric equilibrium should be
checked, where θ̄E [θK ] gives equilibrium expenditures as a function of the capital stock.
As already mentioned, stability requires this derivative to be negative since then, as Bald-
win (1999) puts it, “...if a unit of capital ’accidentally’ disturbed symmetry, the ’accident’
pushes capital’s rental rate below its steady-state level in the ’receiving’ nation (home).
This induces home savers/investors to allow K to erode back to its pre-shock level. More-

30We add the subscript (...)equ to indicate that equilibrium reactions of θE are taken into account in this
derivative in contrast to the pure local competition effect dπ

dθK
described in section 2.4.2.
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over, since dπ[...]/dθK > 0 means dπ∗[...]/dθK < 0, foreign savers react in the opposite
direction.” (Baldwin, 1999, p. 263). To gain more insights about the forces at work we
rewrite the derivative as (

dπ

dθK

)
equ

=
dπ

dθK
+

dπ

dθE

dθ̄E

dθK
. (41)

The first term on the right hand side of this equation, dπ
dθK

, represents the anti-agglomerative
local competition effect which is negative and was already described in section 2.4.2. The
second term is the pro-agglomerative circular causality force. It captures the fact that
shifting production increases capital income in the receiving nation and therefore expen-
ditures, i.e. dθ̄E

dθK
> 0. This in turn increases profits since dπ

dθE
> 0, as was also mentioned

in section 2.4.2, and therefore induces further capital accumulation. Since both, the neg-
ative local competition effect, dπ

dθK
, and the positive effect of expenditures on profits, dπ

dθE
,

are independent of the mortality rate (cf. section 2.4.2), the introduction of ageing can
only influence stability via the effect of production shifting on expenditures, captured by
the term dθ̄E

dθK
. In order to confirm our stability result with respect to μ obtained by in-

vestigating the eigenvalues, this derivative must decrease in the mortality rate such that
higher mortality weakens the agglomerative force and therefore increases stability. To put
it differently, the mortality rate determines how much weight is given to the agglomera-
tion force as compared to the dispersion force. The comparative statics result of section
3 suggest some possible lines of explanation why the production shifting effect on expen-
ditures should decrease in the mortality rate.31 There we have shown that for plausible
parameter values a higher μ implies a larger proportion of young and poor compared to
old and wealthy individuals. Aggregate equilibrium expenditures are therefore already
higher and do not react that much to production shifting. This effect seems to dominate
all the other forces that work in favour of an increase of dθ̄E

dθK
in μ, e.g. the increase in

equilibrium profits resulting from a higher mortality rate.32

5 Concluding remarks

The model in this paper generalizes the constructed capital framework of Baldwin (1999)
by allowing for more realistic demographic structures. In particular, incorporating finite
planning horizons makes it possible to investigate the impacts of population ageing on
agglomeration tendencies of economic activities. We show that in the case of reasonable
mortality rates, even very low levels of trade costs do not lead to catastrophic agglomer-
ation. Introducing mortality therefore stabilizes the symmetric equilibrium and acts as a
force that promotes a more equal distribution of productive factors between two regions.

31Doing the informal stability analysis of Baldwin (1999) is impossible in our model set-up due to the
fact that the additional expression −μ(ρ + μ)FK appears in the aggregate Euler equations as an additive
term and makes them highly non-linear. As a consequence the production shifting effect on expenditures,
dθ̄E
dθK

, is not obtainable.
32The positive dependence of equilibrium profits on the mortality rate can be shown easily. It indi-

cates that a higher mortality rate amplifies the expenditure shifting effect that is associated with shifting
production (capital) to the other region.
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From the point of view of economic policy, the most important insight is that, in sharp
contrast to other New Economic Geography approaches, our model does not necessarily
associate deeper integration with higher interregional inequality. In particular, we have
shown that plausible parameter values are far away from supporting core-periphery out-
comes. Consequently, there is no need to impose trade barriers like tariffs and quotas to
increase transport costs in order to avoid de-industrialization of one region. Especially in
the case of Europe this implies that there is no tradeoff between the two most important
targets of the European Union: integration on the one hand and interregional equality
on the other hand. Instead, the implementation of appropriate policies to achieve one
objective does not interfere with the realization of the other goal.

However, introducing mortality was only a first step in making Baldwin (1999)’s con-
structed capital model more realistic. The assumption of a constant mortality rate adopted
for the sake of analytical tractability is still at odds with reality. Using age dependent
mortality rates is therefore one possible line for future research. Moreover, it would be
worthwhile to consider the effects of varying mortality rates between regions. In such a
setting one could investigate how differences in mortality rates are linked to differences in
capital accumulation rates, again a question of high relevance for economic policy.
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Appendix

A The individual’s utility optimization problem

Suppressing time arguments in the optimization procedure the current value Hamiltonian
for the individual’s optimization problem can be written as

H(e, k, λ, t) = ln
[ e

P

]
+ λ

(
wl + πk − e

wF
+ μk − δk

)
(42)

where P is the perfect price index translating expenditures into indirect utility.33 The
first order conditions of the problem associated with equation (42) are given by

∂H

∂e

.= 0 ⇒ 1
e

=
λ

Fw
, (43)

∂H

∂k

.= (ρ + μ)λ − λ̇ ⇒ λ̇

λ
= − π

Fw
+ ρ + δ, (44)

∂H

∂λ

.= k̇ ⇒ wl + πk − e

wF
+ μk − δk = k̇ (45)

and the standard transversality condition. Taking the time derivative of equation (43)
under the assumption that w is time independent34 and combining it with equation (44)
yields the consumption Euler equation for the representative individual

ė

e
=

π

Fw
− δ − ρ.

The static problem of dividing consumption between the manufacturing composite and
the agricultural good for fixed consumption expenditure e can be formulated as

max
cagg
m ,cn

(cn)1−ξ(cagg
m )ξ

s.t. pncn + pagg
m cagg

m = e, (46)

where pagg
m is an appropriate price index which can be shown to equal a weighted average

of the two Dixit and Stiglitz (1977) price indexes at home and foreign with the foreign
price index being augmented by transport costs. Setting up the Lagrangian as

�(cn, cagg
m , λa) = (cn)1−ξ(cagg

m )ξ + λa (e − pncn − pagg
m cagg

m ) (47)
33This price index can be obtained from the solution to the optimization problem in stage two and three.
34Section 2.4.1 shows that this indeed holds as the wage rate is pinned down by the price of the agricul-

tural good which is chosen to be the numeraire of the economy.
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and solving for the first order conditions yields

∂�

∂cn

.= 0 ⇒ (1 − ξ)(cn)−ξ(cagg
m )ξ = λapn, (48)

∂�

∂cagg
m

.= 0 ⇒ (cn)1−ξξ(cagg
m )ξ−1 = λap

agg
m , (49)

∂�

∂λa

.= 0 ⇒ pncn + pagg
m cagg

m = e. (50)

Manipulating these first order conditions leads to unit elastic demands for the agricultural
good and the CES composite of manufactured goods given by

cn =
(1 − ξ)e

pn

cagg
m =

ξe

pagg
m

. (51)

Taking into account the Cobb-Douglas specification of utility in these two goods it is no
surprise that a fraction ξ of income used for consumption is spent on manufactures and a
fraction 1 − ξ on the agricultural good.

In the last stage the static problem of distributing manufacturing consumption among
different varieties for fixed manufacturing consumption expenditure ξe can be formulated
as

max
cH
m(i),cF

m(j)

[∫ VH

0

(
cH
m(i)

)σ−1
σ di +

∫ VF

0

(
cF
m(j)

)σ−1
σ dj

] σ
σ−1

s.t.
∫ VH

0
pH

m(i)cH
m(i)di +

∫ VF

0
pF

m,ϕ(j)cF
m(j)dj = ξe. (52)

Setting up the Lagrangian as

�(cH
m(i), cF

m(j), λm) =

[∫ VH

0

(
cH
m(i)

)σ−1
σ di +

∫ VF

0

(
cF
m(j)

)σ−1
σ dj

] σ
σ−1

+

λm

[
ξe −

∫ VH

0

pH
m(i)cH

m(i)di −
∫ VF

0

pF
m,ϕ(j)cF

m(j)dj

]
(53)
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and solving for the first order conditions yields35

∂�

∂cH
m(i)

.= 0 ⇒ σ

σ − 1

[∫ VH

0
(cH

m(i))
σ−1

σ di +
∫ VF

0
(cF

m(j))
σ−1

σ dj

] 1
σ−1

×σ − 1
σ

(cH
m(i))−

1
σ = λmpH

m(i), (54)

∂�

∂cF
m(j)

.= 0 ⇒ σ

σ − 1

[∫ VH

0
(cH

m(i))
σ−1

σ di +
∫ VF

0
(cF

m(j))
σ−1

σ dj

] 1
σ−1

×σ − 1
σ

(cF
m(j))−

1
σ = λmpF

m,ϕ(j), (55)

∂�

∂λm

.= 0 ⇒
∫ VH

0
pH

m(i)cH
m(i)di +

∫ VF

0
pF

m,ϕ(j)cF
m(j)dj = ξe. (56)

Recalling the definition of cagg
m given below equation (1) these first order conditions can

be rewritten as

cagg
m

[∫ VH

0
(cH

m(i))
σ−1

σ di +
∫ VF

0
(cF

m(j))
σ−1

σ dj

]−1

(cH
m(i))−

1
σ = λmpH

m(i),

(57)

cagg
m

[∫ VH

0
(cH

m(i))
σ−1

σ di +
∫ VF

0
(cF

m(j))
σ−1

σ dj

]−1

(cF
m(j))−

1
σ = λmpF

m,ϕ(j).

(58)

Isolating cH
m(i) and cF

m(j) on the left hand side, then multiplying both sides by pH
m(i) or

pF
m,ϕ(j) and finally integrating over all varieties yields

∫ VH

0
pH

m(i)cH
m(i)di =

λ−σ
m

∫ VH

0 (pH
m(i))1−σdi

[∫ VH

0 (cH
m(i))

σ−1
σ di +

∫ VF

0 (cF
m(j))

σ−1
σ dj

]−σ

(cagg
m )−σ

,∫ VF

0
pF

m,ϕ(j)cF
m(j)dj =

λ−σ
m

∫ VF

0 (pF
m,ϕ(j))1−σdj

[∫ VH

0 (cH
m(i))

σ−1
σ di +

∫ VF

0 (cF
m(j))

σ−1
σ dj

]−σ

(cagg
m )−σ

.

Adding these two expressions, using the budget constraint from above, and isolating λm

gives the following equation for the Lagrange multiplier, i.e. the shadow price of manu-
35Note that this is in fact a variational problem.
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facturing consumption,

λm =
(ξe)−

1
σ cagg

m

[∫ VH

0 (pH
m(i))1−σdi +

∫ VF

0 (pF
m,ϕ(j))1−σdj

] 1
σ[∫ VH

0 (cH
m(i))

σ−1
σ di +

∫ VF

0 (cF
m(j))

σ−1
σ dj

] . (59)

Plugging this expression back into equations (57) and (58) finally leads to the demands
for all varieties given by

cH
m(i) =

ξe(pH
m(i))−σ[∫ VH

0 (pH
m(i))1−σdi +

∫ VF

0 (pF
m,ϕ(j))1−σdj

] ,

cF
m(j) =

ξe(pF
m,ϕ(j))−σ[∫ VH

0 (pH
m(i))1−σdi +

∫ VF

0 (pF
m,ϕ(j))1−σdj

] .

B Aggregation over individuals

The aggregate Euler equation can be derived as follows.36 Taking the time derivative of
aggregate consumption expenditures given in equation (10) yields

Ė(t) = μe(t, t) + μ

∫ t

−∞
ė(t0, t)e−μ(t−t0) + e(t0, t)(−μ)e−μ(t−t0)dt0

= μe(t, t) − μE(t) + μ

∫ t

−∞
ė(t0, t)e−μ(t−t0)dt0, (60)

where we used the definition of aggregate consumption expenditures in going from the
first to the second line. To arrive at the final aggregate Euler equation it is necessary
to derive optimal consumption expenditures e(t, t) of newborns in the planning period t

and the aggregate consumption expenditure rule E(t). To achieve this we reformulate the
individual’s optimization problem as follows. In line with equation (1) the expected utility
U(t0, t) at an arbitrary point in time t of a consumer born at time t0 ≤ t is given by

U(t0, t) ≡
∫ ∞

t
e−(ρ+μ)(τ−t)ln

(
e(t0, τ)
P (τ)

)
dτ, (61)

where we again used the perfect price index P translating expenditures in indirect utility
(cf. appendix A). The law of motion of capital given in equation (2) can be rewritten as

k̇(t0, τ) =
w(τ)l(t0, τ) + π(τ)k(t0, τ) − e(t0, τ)

w(τ)F
+ μk(t0, τ) − δk(t0, τ)

=
(

π(τ)
w(τ)F

+ μ − δ

)
k(t0, τ) +

l(t0, τ)
F

− e(t0, τ)
w(τ)F

. (62)

From equation (62) the individual’s lifetime budget can be derived. First both sides
36The derivations shown in this appendix closely follow the ones described by Heijdra and van der Ploeg

(2002) in chapter 16.
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of the equation are multiplied by e−RA(t,τ) ≡ e
− τ

t
π(s)

w(s)F
+μ−δ ds and rearranged to[

k̇(t0, τ) −
(

π(τ)
w(τ)F

+ μ − δ

)
k(t0, τ)

]
e−RA(t,τ) =

[
l(t0, τ)

F
− e(t0, τ)

w(τ)F

]
e−RA(t,τ). (63)

Observing that the left hand side of equation (63) is d
[
k(t0, τ)e−RA(t,τ)

]
/dτ by applying

Leibnitz’s rule to recognize that dRA(t, τ)/dτ = π(τ)
w(τ)F + μ − δ and integrating over the

interval [t,∞) yields

∫ ∞

t
d

[
k(t0, τ)e−RA(t,τ)

]
=

∫ ∞

t

[
l(t0, τ)

F
− e(t0, τ)

w(τ)F

]
e−RA(t,τ)dτ.

This expression can be solved to

lim
τ→∞ k(t0, τ)e−RA(t,τ) − k(t0, t)e−RA(t,t) = HW (t) −

∫ ∞

t

e(t0, τ)
w(τ)F

e−RA(t,τ)dτ, (64)

where we defined HW (t) ≡ ∫ ∞
t

w(τ)l(t0,τ)
w(τ)F e−RA(t,τ)dτ denoting human wealth of individuals

in capital units consisting of the present value of lifetime wage income using the annuity
factor RA(t,τ) for discounting. Note that e−RA(t,t) = 1 and that the first term on the left
hand side represents “terminal capital holdings”. These holdings must be equal to zero
because first, the insurance company will ensure their nonnegativity, and second, it is
suboptimal for an individual to have positive terminal assets as there is neither a bequest
motive nor satiation from consumption. Taking this into account yields the following
solvency condition

lim
τ→∞ e−RA(t,τ)k(t0, τ) = 0, (65)

which prevents an individual from running a Ponzi game against the life-insurance com-
pany. The No-Ponzi-Game condition can be inserted in equation (64) to obtain the indi-
vidual’s lifetime budget restriction

k(t0, t) + HW (t) =
∫ ∞

t

e(t0, τ)
w(τ)F

e−RA(t,τ). (66)

The present value of an individual’s consumption expenditure plan in capital units must be
equal to the sum of human wealth in capital units and capital holdings (=total wealth).
Evaluating the lifetime budget constraint at t = t0 shows that the discounted sum of
lifetime labour earnings must equal discounted consumption expenditures.37 This implies,
from investigating the law of motion for capital, that discounted savings are equal to
discounted accumulated profits, i.e. savings are only used for reallocating consumption
across lifetime.

Maximizing expected utility given in equation (61) subject to the budget constraint in
37Note that capital holdings of newborns k(t0, t0) are zero by assumption (no bequests).
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equation (66) yields the following first order condition

1
e(t0, τ)

e−(ρ+μ)(τ−t) = λ(t)
1

w(τ)F
e−RA(t,τ), τ ∈ [t,∞), (67)

where λ(t) represents the marginal expected lifetime utility of wealth.38 Individuals should
therefore plan consumption expenditures in a way such that the appropriately discounted
marginal utility of expenditures and wealth are equated.

Applying equation (67) for the planning period (τ = t) yields e(t0, t) = w(t)F
λ(t) . Using

this result and then substituting for λ(t) also from the first order condition in equation
(67) helps to establish the following equality∫ ∞

t
e(t0, t)e−(ρ+μ)(τ−t)dτ =

∫ ∞

t

w(t)F
λ(t)

e−(ρ+μ)(τ−t)dτ

= Fw(t)
∫ ∞

t

e(t0, τ)
Fw(τ)

e−RA(t,τ)dτ.

Integrating out and using the lifetime budget constraint of equation (66) finally yields
consumption expenditures e(t0, t) in the planning period t

e(t0, t)
ρ + μ

[
−e−(ρ+μ)(τ−t)

]∞
t

= Fw(t)[k(t0, t) + HW (t)]

e(t0, t) = (ρ + μ)Fw(t)[k(t0, t) + HW (t)]. (69)

The above equation clearly shows that optimal consumption expenditures in the planning
period t in capital units, e(t0,t)

Fw(t) , are proportional to total wealth with the marginal propen-
sity to consume out of total wealth being constant and equal to the “effective” rate of time
preference ρ + μ.

Using this expression for optimal consumption expenditures in the definition of aggre-
gate consumption expenditures in equation (10) yields the following very simple aggregate
consumption expenditure rule

E(t) ≡ μ

∫ t

−∞
e−μ(t−t0)(ρ + μ)Fw(t)[k(t0, t) + HW (t)]dt0

= (ρ + μ)Fw(t)μ
[∫ t

−∞
e−μ(t−t0)k(t0, t)dt0 +

∫ t

−∞
e−μ(t−t0)HW (t)dt0

]
= (ρ + μ)Fw(t) [K(t) + HW (t)] , (70)

where the aggregate capital stock is defined in equation (7) and can be rewritten in anal-
38Differentiating this first order condition with respect to τ , inserting the expression for λ(t) also ob-

tainable from this first order condition and simplifying yields the following Euler equation

ė(t0, τ)

e(t0, τ)
=

π(τ)

w(τ)F
− ρ − δ +

ẇ(τ)

w(τ)
. (68)

With time-invariant wages (cf. section 2.4.1) this Euler equation is exactly the same as the one obtained
in equation (6).
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ogy to aggregate consumption expenditures given in equation (10). Moreover it is easily

established that μHW (t)
[

e−μ(t−t0)

μ

]t

−∞
= HW (t).39

Finally we modify equation (60) by substituting for e(t, t) and E(t) from the derived
expressions of equation (69) evaluated at birth date t40 and equation (70) as well as for
ė(t0, t) from the individual Euler equation given in expression (68). Dividing by E(t) then
gives the aggregate Euler equation

Ė(t)
E(t)

= −μ(ρ + μ)Fw(t)
K(t)
E(t)

+

μ

E(t)

∫ t

−∞
e(t0, t)

[
π(t)

w(t)F
− ρ − δ +

ẇ(t)
w(t)

]
e−μ(t−t0)dt0

= −μ(ρ + μ)Fw(t)
K(t)
E(t)

+
π(t)

w(t)F
− ρ − δ +

ẇ(t)
w(t)

= −μ
E(t) − e(t, t)

E(t)
+

ė(t0, t)
e(t0, t)

,

where in the second line we used again the definition of aggregate consumption expenditure
from equation (10) and the term ẇ(t)/w(t) disappears in the case of time invariant wages
(cf. section 2.4.1).

C The manufacturing firm’s profit maximization problem -

Derivation of rental rates

Inserting optimal demands for varieties into operating profits leads to the following ex-
pression to be maximized

(pH
m(i, t) − w(t)β)

(∫ t

−∞
ξe(t0, t)(pH

m(i, t))−σ

Pm(t)
N(t0, t)dt0

)
+

(pF
m,ϕ(i, t) − w(t)ϕβ)

(∫ t

−∞

ξe∗(t0, t)(pF
m,ϕ(i, t))−σ

P ∗
m(t)

N∗(t0, t)dt0

)
,

39This aggregation property of consumption expenditures is due to the fact that we assumed a constant
probability of death implying an age independent marginal propensity to consume out of total wealth (see
equation (69)).

40Note again that k(t, t) = 0 and newborns therefore consume a fraction of their human wealth at birth,
i.e. e(t, t) = (ρ + μ)Fw(t)HW (t).
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whose derivatives with respect to pH
m(i, t) and pF

m,ϕ(i, t) are set equal to zero to yield the
first order conditions

0 =
(1 − σ)(pH

m(i, t))−σξe(t0, t)
Pm(t)

N(t0, t)

+
σ(pH

m(i, t))−σ−1ξe(t0, t)
Pm(t)

w(t)βN(t0, t),

0 =
(1 − σ)(pF

m,ϕ(i, t))−σξe∗(t0, t)
P ∗

m(t)
N∗(t0, t)

+
σ(pF

m,ϕ(i, t))−σ−1ξe∗(t0, t)
P ∗

m(t)
w(t)βϕN∗(t0, t).

Rearranging and simplifying gives optimal prices

pH
m(i, t) =

σ

σ − 1
w(t)β,

pF
m,ϕ(i, t) =

σ

σ − 1
w(t)βϕ.

Using the above first order conditions in the definition of operating profits yields

π(t) =
pH

m(t)
σ

(∫ t

−∞
cH
m(t0, t)N(t0, t)dt0

)
+

pF
m,ϕ(t)

σ

(∫ t

−∞
cH∗
m (t0, t)N∗(t0, t)dt0

)
,

where an equivalent equation holds in the foreign region. Note that the variety index i

can be dropped since prices and therefore profits are equal for all firms. Applying the
definitions of the share variables sH

H(t), sF
H(t), sF

F (t), and sH
F (t) given above in equations

(22) and (23) leads to the following expressions for the rental rates

π(t) =
ξ

σ

(∫ t

−∞
sH

H(t)e(t0, t)N(t0, t)dt0 +
∫ t

−∞
sF

H(t)e∗(t0, t)N∗(t0, t)dt0

)
,

π∗(t) =
ξ

σ

(∫ t

−∞
sF

F (t)e∗(t0, t)N∗(t0, t)dt0 +
∫ t

−∞
sH

F (t)e(t0, t)N(t0, t)dt0

)
.

Inserting optimal demands from equation (4) into the definitions for the share variables
and again using mill pricing from equations (20) and (21) yields the share variables as
functions of home and foreign capital stocks as well as of the level of transport costs41

sH
H(t) =

1
K(t) + φK∗(t)

, (71)

sF
H(t) =

φ

K(t)φ + K∗(t)
. (72)

41Note that the number of varieties in the home region VH(t) is equal to the capital stock at home K(t)
as one variety exactly requires one unit of capital as fixed input (analogously K∗(t) ≡ VF (t)).
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Using them in equations (24) and (25) gives the final expressions for rental rates

π =
(

θE

θK + φ(1 − θK)
+

(1 − θE)φ
φθK + 1 − θK

)
︸ ︷︷ ︸

Bias

(
ξEW

σKW

)
,

π∗ =
(

1 − θE

1 − θK + φθK
+

θEφ

φ(1 − θK) + θK

)
︸ ︷︷ ︸

Bias∗

(
ξEW

σKW

)
.

D Intermediate results for the stability analysis

The Jacobian matrix Jsym, which is evaluated at the symmetric equilibrium and given in
equation 35, has the following entries Ji for i = 1, . . . 4:

J1 =
1

2(φ + 1)
√

σ

(
A(φ + 2) − Bφ (A + B)φ

(A + B)φ A(φ + 2) − Bφ

)
, (73)

J2 =

⎛
⎝ −F (A+B)2(φ2+1)

4(φ+1)2ξ − Fμ(μ + ρ) − (A+B)2Fφ
2(φ+1)2ξ

− (A+B)2Fφ
2(φ+1)2ξ

−F (A+B)2(φ2+1)
4(φ+1)2ξ − Fμ(μ + ρ)

⎞
⎠ ,

(74)

J3 =
1

F (φ + 1)σ

(
ξ − (φ + 1)σ φξ

φξ ξ − (φ + 1)σ

)
, (75)

J4 =

⎛
⎝ φ(A+ρ

√
σ)−δ(φ2+φ+1)√σ

(φ+1)2
√

σ
− (A+B)φ

(φ+1)2
√

σ

− (A+B)φ
(φ+1)2

√
σ

φ(A+ρ
√

σ)−δ(φ2+φ+1)√σ

(φ+1)2
√

σ

⎞
⎠ , (76)

with the parameter clusters A ≡ √
σ(δ + ρ)2 + 4μ(μ + ρ)ξ as well as B ≡ (δ + ρ)

√
σ.

In order to get a first insight into the nature and signs of the eigenvalues of Jsym, we
calibrated the model using the parameter values ρ = 0.015 and δ = 0.05 and allowing
the elasticity of substitution and the manufacturing share of consumption to vary within
the ranges 2 ≤ σ ≤ 8 and 0.1 ≤ ξ ≤ 0.9. Figures 6, 7, 8 and 9 illustrate the numerical
investigation of the signs of the eigenvalues for σ = 4, ξ = 0.3 and varying μ and φ.42

First, the figures suggest that all eigenvalues are real for the chosen parameter space.
Moreover, figures 6, 7 and 9 show that the first eigenvalue is always negative, whereas the
second and fourth are always positive. This result is independent of the level of transport
costs and the mortality rate. Saddle path stability of the symmetric equilibrium therefore
seems to crucially depend on the third eigenvalue by requiring it to be negative. As can be
seen from the 3D plot in figure 8 there only exists a very small range of combinations of low
μ and high φ where the sign of the third eigenvalue is positive. One is therefore tempted to
conclude that with a sufficiently high mortality rate, the symmetric equilibrium is stable
for all levels of transport costs.

42We also conducted the same simulations for other values of σ and ξ within the considered range.
Overall we find that our findings with respect to the signs of the eigenvalues are insensitive to changes in
those parameters.
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Figure 6: Eigenvalue 1

Figure 7: Eigenvalue 2
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Figure 8: Eigenvalue 3

Figure 9: Eigenvalue 4

31



References

Auerbach, A. J. and Kotlikoff, L. J. (1987). Dynamic Fiscal Policy. Cambridge University
Press.

Baldwin, R., Forslid, R., Martin, P., Ottaviano, G., and Robert-Nicoud, F. (2003). Eco-
nomic Geography & Public Policy. Princeton University Press.

Baldwin, R. E. (1999). Agglomeration and endogenous capital. European Economic Re-
view, Vol. 43(No. 2):253–280.

Barro, R. J. and Sala-i-Martin, X. S. (2004). Economic Growth. MIT Press.

Blanchard, O. J. (1985). Debt, deficits and finite horizons. Journal of Political Economy,
Vol. 93(No. 2):223–247.

Bosker, M. and Garretsen, H. (2007). Trade costs, market access and economic geography:
Why the empirical specification of trade costs matters. CEPR Discussion Paper 2071,
pages 1–41.

Brakman, S., Garretsen, H., and Schramm, M. (2005). Putting the new economic ge-
ography to the test: Free-ness of trade and agglomeration in the EU regions. CESifo
Working Paper No. 1566, pages 1–38.

Dixit, A. K. and Stiglitz, J. E. (1977). Monopolistic competition and optimum product
diversity. American Economic Review, Vol. 67(No. 3):297–308.

Futagami, K. and Nakajima, T. (2001). Population aging and economic growth. Journal
of Macroeconomics, Vol. 23(No. 1):31–44.

Gertler, M. (1999). Government debt and social security in a life-cycle economy. Carnegie-
Rochester Conference Series on Public Policy, Vol. 50:61–110.

Head, K. and Mayer, T. (2003). The empirics of agglomeration and trade. CEPII Working
Papers, pages 1–69.

Heijdra, B. J. and van der Ploeg, F. (2002). Foundations of Modern Macroeconomics.
Oxford University Press.

Krugman, P. (1991). Increasing returns and economic geography. Journal of Political
Economy, Vol. 99(No. 3):483–499.

Krugman, P. and Venables, A. J. (1995). Globalization and the inequality of nations. The
Quarterly Journal of Economics, Vol. 110(No. 4):857–880.

Martin, P. and Ottaviano, G. (1999). Growing locations: Industry location in a model of
endogenous growth. European Economic Review, Vol. 43:281–302.

32



Puga, D. (1999). The rise and fall of regional inequalities. European Economic Review,
Vol. 43:303–334.

Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal, Vol.
38(No. 152):543–559.

Solow, R. M. (1956). A contribution to the theory of economic growth. The Quarterly
Journal of Economics, Vol. 70(No. 1):65–94.

Venables, A. J. (1996). Equilibrium locations of vertically linked industries. International
Economic Review, Vol. 37(No. 2):341–359.

Yaari, M. E. (1965). Uncertain lifetime, life insurance and the theory of the consumer.
The Review of Economic Studies, Vol. 32(No. 2):137–150.

Zhang, J., Zhang, J., and Lee, R. (2003). Rising longevity, education, savings, and growth.
Journal of Development Economics, Vol. 70(No. 1):83–101.

33



VIENNA INSTITUTE OF DEMOGRAPHY 

Working Papers 

Skirbekk, Vegard, Anne Goujon, and Eric Kaufmann, Secularism or Catholicism? 
The Religious Composition of the United States to 2043, VID Working Paper 
04/2008.

Ediev, Dalkhat M., Extrapolative Projections of Mortality: Towards a More 
Consistent Method, VID Working Paper 03/2008. 

Schwarz, Franz, Christian Korbel, and Johannes Klotz, Alcohol-Related Mortality 
among Men in Austria 1981–2002 and the Importance of Qualification and 
Employment, VID Working Paper 02/2008. 

Buber, Isabella and Henriette Engelhardt, The Relation Between Depressive 
Symptoms and Age Among Older Europeans. Findings from SHARE, VID Working 
Paper 01/2008. 

Aparicio Diaz, Belinda, Thomas Fent, Alexia Prskawetz, and Laura Bernardi, 
Transition to Parenthood: The role of Social Interaction and Endogenous Networks,
VID Working Paper 05/2007. 

Ediev, Dalkhat M, On Projecting the Distribution of Private Households by Size, VID 
Working Paper 04/2007. 

Biehl, Kai und Thomas Fent, Vorausschätzungen für die Entwicklung der 
Gesamtbevölkerung und der Beschäftigung in Österreich bis 2035, VID Working 
Paper 03/2007. 

Feichtinger, Gustav, Maria Winkler-Dworak, Inga Freund, and Alexia Prskawetz, On
the Age Dynamics of Learned Societies: Taking the Example of the Austrian Academy 
of Sciences, VID Working Paper 02/2007. 

Winkler-Dworak, Maria and Laurent Toulemon, Gender Differences in the Transition 
to Adulthood in France: Is There Convergence Over the Recent Period? VID 
Working Paper 01/2007. 

Prskawetz, Alexia, Marija Mamolo, and Henriette Engelhardt, Reconsidering the 
Relation between Fertility and Key Fertility-Related Demographic Behaviour across 
Space and Time, VID Working Paper 09/2006. 

The Vienna Institute of Demography Working Paper Series receives only limited review. 

Views or opinions expressed herein are entirely those of the authors. 


