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Abstract 
 

Long-term consequences of childbearing postponement for the population size are 
considered. General relations are obtained, which imply that the cohort NRR, the final 
generation length, and dynamics of the number of genealogical lines determine the final 
population trend. The period fertility rates are not relevant to ultimate population size in 
the case of stationary population and have only moderate effect when cohort NRR differs 
from unity. Relations obtained are also of value for formal demography and can be applied 
to the fertility transition modeling, population forecasting, and population genetics. 
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Long-term effects of childbearing postponement 
 
 

Dalkhat M. Ediev 
 
 

1. Introduction 
 
The work of Bongaarts and Feeney (1998) stimulated a broad research on fertility 
postponement consequences for fertility measures and population reproduction 
perspectives (e.g. Lesthaeghe and Willems 1999; Kohler and Philippov 2001; Zeng and 
Land 2002; Kohler and Ortega 2002a, 2002b; Lutz, O’Neill, and Scherbov 2003; 
Goldstein, Lutz, and Scherbov 2003; Schoen 2004). The subject is rather complicated due 
to interplay of period and cohort factors as reflected in controversial comments to the 
aforementioned work and to earlier works concerned with cohort-related fertility measures 
(Hajnal 1947; Ryder 1964, 1965; Ni Bhrolchain 1992; Van Imhoff and Keilman 2000; Kim 
and Schoen 2000; Bongaarts and Feeney 2000). Schoen and Jonsson (2003), who put the 
problem into a stimulating form of a demographic paradox, illustrated the complicated 
nature of the problem. They demonstrated that populations may shrink even if every cohort 
has completed fertility rate above the replacement level. They show that such a paradoxical 
situation can last for a very long period due to declining cohort size. 

 
The works mentioned attract attention to the effect of childbearing postponement on 

fertility rates while not directly discussing long-term consequences for the population size. 
We look at the problem from another angle, by studying what happens to the population 
size during and after shifts in the fertility schedule. Here I turn to this aspect of the fertility 
postponement phenomenon and argue that cohort fertility measures as well as ‘corrected’ 
period fertility measures do matter in the long run. As we will see, when fertility schedule 
alters, population passes from one global trend to another, and period fertility pattern can 
differ substantially from cohort patterns only during the transition. Our results are 
especially clear in the case of population whose cohorts simply replace themselves. In this 
case, the ultimate population size depends neither on period manifestations of the fertility 
transition, nor on the duration of the transition. Rather, the ultimate population size in this 
case depends on population characteristics before and after the fertility transition only. 
Even more, if population – after an arbitrary period – will return to its original fertility 
patterns, the population size will also return to its original trend. Interestingly, an 
analogous to the population momentum can be introduced, which relates the ultimate 
change in population size during the fertility transition to pre-transition population 
structure and ultimate reproduction regimen.  

 
First, we will discuss the concept in the case of population with cohorts simply 

replacing themselves. The concept of genealogical lines crossing the time line will 
facilitate our derivations. We will see that this quantity is constant if every cohort simply 
replaces itself. The population stationary size depends on this quantity and fertility timing. 
Hence, ultimate fertility pattern determines the population size in the long run irrespective 
to the transient fertility patterns. Then, we will turn to the case of arbitrary population and 
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derive general relations. In the conclusion, we undertake a discussion of some implications 
to population reproduction measurement, population modeling, and genetics. 
 
 
2. Population dynamics under simple reproduction of cohorts 

 
Let us consider the population whose cohorts simply replace themselves, i.e. every 
cohorts’ net reproduction rate (NRR) equals to unity. What could happen to the population 
size when intergeneration intervals became longer? Intuitively it is clear, that in such 
circumstances births will be distributed within longer time intervals. Therefore, the 
intensity of births, i.e. the number of births per time unit, should become lower. This, in 
turn, implies that the population size should also decrease, as the stationary population size 
is a product of the births intensity and of the expectation of life at birth. At the same time, 
it is clear that the births intensity as well as the population size will not diminish 
constantly. As soon as the fertility timing will stop changing, the births intensity and the 
population size will also stabilize. Hence, it is natural that during the transition, when 
fertility timing shifts from one pattern to another, the period fertility rates will be below the 
replacement level, as the initially stationary population should decrease in size. However, 
the period fertility rates should again return to the replacement level and synchronize with 
the cohort rates after completion of the transition. In view of this population dynamics, the 
following crucial questions arise, which need an in-depth study: Which factors determine 
the final births intensity and the population size? How does the final population size 
depend on duration of the transition? How is it related to what happens during the 
transition (e.g. to period fertility measures observed during the transition)? What would 
happen to the population size if fertility pattern returned to its original pre-transition 
shape? 

 
Let us turn to quantitative concepts in order to carry a formal study of the questions 

presented. When every cohort simply replaces itself, every newborn on average will give 
birth to one successor. For further derivations it will be helpful to put the cohort 
reproduction model into the following shape. We will consider that every newborn gives 
birth to exactly one successor. In reality some newborns have no successors at all, and 
others have more than one successor. Yet, we can formally distribute all births in a given 
cohort among all newborns of this cohort in a way presented above. This is possible as the 
cohort net reproduction rate equals to unity. Obviously, the fertility rates, inter-generation 
intervals, period and cohort fertility rates and population dynamics will not be affected by 
the new interpretation of the reproduction model.  

 
The following visualization of the reproduction process will facilitate our study. We 

will depict births as dots and connect together dots of successive births. As anyone in our 
interpretation has exactly one successor, the reproduction process will be depicted as a 
chart of genealogical lines, which never intersect, never split, and never end. Illustrative 
example is presented on figure 1. Horizontal lines correspond to the genealogical lines, 
vertical lines correspond to a given time moment. Number of dots between two time lines 
is a number of births in the corresponding time interval. When childbearing postpones, 
interval between dots on the chart became wider, and their intensity, i.e. intensity of births, 
decreases. In the example presented on the figure, fertility timing alters during the period 
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from year 200 until year 400. Mean age at childbearing rises from the initial level of 20 
years to the level of 35 years.  

 
Figure 1. Illustrative example of the chart depicting the population reproduction process in 
the case of simple reproduction 
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The key observation from the presented reproduction model is that the number of 

genealogical lines crossing any time line is invariant of shifts in fertility timing as long as 
cohorts’ net reproduction rates remain equal to unity. Given the number of genealogical 
lines crossing any given time line and the fertility timing, one can estimate the births 
intensity. It is the product of the number of genealogical lines by the births intensity per 
one line. For any genealogical line, there is one birth per interval between two successive 
births. Expected duration of this interval equals to the mean age at childbearing. Hence, 
average births intensity for one genealogical line is a reciprocal of the mean age at 
childbearing. This average intensity will approximate the expected value of real births 
intensity if, under the ergodic property, the population structure is randomized enough. 
Finally, the births expected intensity ( )tB  at time t  can be obtained by the following 
relation: 

( ) ( )
( )t
tGtB

µ
=

( )tG

, (1) 

here  is a number of genealogical lines crossing the time line , and  is an 
expected age of childbearing for those who have been born before the time  and will give 
birth after that moment. We reserve the prefix ‘expected’ for a small population, whose 
births intensity can fluctuate substantially. For large populations equation (1) corresponds 
to the observed level of births intensity.  

t ( )tµ
t

 

 4



One can compute the population size ( )tN  at time t , given the births dynamics and 
mortality schedule: 

( ) ( ) ( )∫ −−=
X

dxxtBxt,xltN
0

( )t,xl

, (2) 

here  is a survivorship function, i.e. the accumulated probability of surviving from 
age  to age 0 x  for those born at time t ; X  is the upper age, to which people can survive.  

 
If the number of genealogical lines, fertility patterns, and survivorship function 

remain constant for at least X  years, and the population structure has been randomized, we 
can obtain from (1), (2) for the expected population size: 

( ) ( )
( ) ( ) ( ) ( )

( )t
tGtedxt,xl

t
tGtEN

X

µ
⋅

=
µ

= ∫ 0

0

( )te0

, (3) 

where  is the life expectancy at birth for those born at time t . Relations (1), (3) can 
also be applied to the births intensity and the population size of the stationary population 
equivalent to the population under study. 

 
Figure 2 illustrates relation (3). It depicts the simulated population dynamics for a 

small population consisting of 40 genealogical lines. Mean age at childbearing changes in 
the period between year 200 and year 300 from 20 to 35 years. The thin and smooth line 
presents the population size expected under relation (3). It is clearly seen that, although the 
population size fluctuates randomly and changes dramatically during the fertility transition, 
its average level is well explained by the relation obtained. 

 
Now we can answer the key questions stated above:  
 
1. The final births intensity and the population size are fully determined by the 

number of genealogical lines, the life expectancy at birth, and the mean age at 
childbearing. Neither the shape of the fertility and survivorship functions, nor 
the reproduction history affect the final population size as long as the cohort 
NRR equals to unity. In particular, changes in variance of the fertility function 
and changes of fertility rates by birth order have no effect on the ultimate 
population size as long as the NRR and the mean age at childbearing are 
controlled.  

 
2. The final births intensity and the population size depend neither on duration of 

the transition, nor on what ever happens during the transition. In particular, 
period fertility measures observed during the transition are not relevant to the 
population asymptote. 

 
3. The population size will return exactly to the same level as before the transition, 

if fertility pattern will return to its original shape. 
 
4. Transitional process could affect the population size and the age structure 

during and right after the transition only. 
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Figure 2. Illustrative dynamics of the population size. Population consists of 40 
genealogical lines with mean age at childbearing that equals to 20 in the period before year 
200 and equals to 35 after year 300 
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As the ultimate population size does not depend on how exactly passes the transition, 

one can use the concept close to the population momentum. Let the initial population 
structure be stationary, i.e. its expected size can be estimated using relation (3). Then the 
following momentum of population change can approximate the ratio of the ultimate 
population size to its pre-transition level: 

µ⋅

µ⋅
=Ω 0

0

0
0

e
e

T , (4) 

here upper-case index ‘0’ denotes pre-transition population measures. If the structure of the 
initial population is not stationary, then the total population momentum can be obtained by 
multiplying the timing factor given by relation (4) to the common momentum of the age 
structure. If, for example, the life expectancy at birth rises from 65 years to 70 years, and 
the mean age at childbearing rises from 22 years to 25 years, then the momentum of 

population growth implied by these changes will be equal to 950
2565
2270 .T =
⋅
⋅

=Ω . Hence, 

the changes in mortality and fertility will result in a 5% decrease of the population. 
 
Another example of application of formula (4) concerns to ‘neutral’ demographic 

transition, which results in changes in mortality and fertility levels having no effect on 
cohorts’ NRRs. In other words, fertility level decreases during such a transition 
simultaneously with the mortality level. As the fertility decreases, the proportion of lower 
birth orders rises, and the mean age at childbearing decreases. Hence, the neutral 
demographic transition could result in population changes described by the momentum 
formulae (4) despite having no effect on cohorts’ reproduction. If, for example, the life 
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expectancy rises from 35 years to 65 years, and mean age at childbearing drops from 30 

years to 23 years, then the population should increase by the product of 422
2335
3065 .T =
⋅
⋅

=Ω . 

Amazingly, population can remarkably gain in size even when gains in survivorship are 
instantly leveled off by fertility decline. 

 
In reality, it is useful to work with genealogical lines in common sense, i.e. those 

lines, which connect births of persons descending from one predecessor. For a large 
population the number of real genealogical lines will be equal to that presented above. In a 
small population, however, this number can fluctuate substantially. Yet, expected number 
of genealogical lines should also be constant in a small population as long as the cohort 
NRR remains equal to one. Formal proof of this proposition can be derived from the results 
in a general case of arbitrary NRRs, which is the subject of the next section. Hence, the 
results obtained are fully applicable if we consider the ( )tG  being an expected number of 
genealogical lines in common sense. 
 
 
3. Effects of childbearing postponement in a general case 

 
In general, when one cannot point to such a simple invariant as the number of genealogical 
lines, study of the problem becomes cumbersome and needs a new approach. As the 
number of genealogical lines in this case could not be constant, the graphical illustration of 
the population reproduction presented above becomes useless. Hence, hereinafter we will 
consider the G  being a number of common genealogical lines crossing the time line t . 
This number will grow on average when cohort NRR is above unity. It will decline with 
NRR below unity. In a small population this general trend will be accompanied by random 
fluctuations, see figure 3.   

( )t

 
Basic equation (1) should be replaced in this section, as we cannot assume that births 

will be distributed uniformly even when fertility timing stabilizes. In order to derive the 
general relation, we can note that each birth dot presented on the genealogical chart marks 
the end of one genealogical line to the left. At the same time, number of genealogical lines 
can start from each birth dot. Expected number of these lines is the NRR of the cohort, 
which the birth belongs to. The expected number of genealogical lines crossing the right 
border of some short time interval ( )∆+t,t  will exceed the number of lines crossing the left 
border to approximately  times the number of births during the interval: ( ) 1−tNRR

( ) ( ) ( )( ) ( ) ( )∆+∆−=−∆+ otBtNRRtGtG 1
( )∆o

, (5) 
where  is a remaining part of order less than ∆ . Dividing equation (5) by ∆  and 
approaching the  to null, we obtain the following general relation between genealogical 
lines number and births intensity: 

∆

( ) ( )
( )

dt
tdG

tNRR
tB ⋅

−
=

1
1 . (6) 
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Figure 3. Genealogical chart depicting the population reproduction process with NRR 
above one 
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Now let us assume the population reproduction parameters and age structure to be 

stable. Under such circumstances all population indexes, including the number of 
genealogical lines, will grow at rate given by Lotka’s r : 

( ) ( )trG
dt

tdG
= , (7) 

where Lotka’s r  is related to the NRR by the common relation: 
( )

( )tT
tNRRlnr =

( )t

. (8) 

Here T  is the generation length for the cohort born at time . t
 
Combining relations (6)-(8), we obtain finally for the stable population: 

( ) ( )
( )

( )
( )tT
tG

tNRR
tNRRlntB ⋅
−

=
1

. (9) 

When NRR is close to the level of simple replacement (one) then generation length turns 
into mean age at childbearing, ( )tNRRln  approaches ( ) 1−tNRR , and formula (9) turns into 
formula (1) obtained earlier for stationary populations. Using general relation (2), we 
obtain for the expected stable population size: 

( ) ( ) ( ) ( )
( )

( )
( ) ( )∫∫ −− ⋅

−
=⋅

−
=

X
rx

X
rx

rT dxet,xl
tT
tG

tNRR
tNRRlndxet,xltG

e
rtEN

00 11
. (10) 

   
Now we are ready to discuss consequences of different transition scenarios for the 

population size. If nothing alters except for the fertility timing, then NRR and survivorship 
function in (10) remain constant through time. Generation length widens or shortens 
reflecting the shifts in fertility tempo, and Lotka’s r  alters following relation (8). Both the 
generation length and Lotka’s r  depend neither on duration nor on timing of the transition, 
however. Instead, they depend on final fertility patterns and will return to their original 
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values, if the fertility patterns will return to their pre-transition shapes. The only 
component in relation (10), which does depend on how passes the transition is the number 
of genealogical lines G . Nonetheless, nothing could reverse the dynamics of this 
component as long as the cohort NRR remains unchanged. It grows with NRR above unity 
and declines with NRR below unity. Peculiarities of the transition can affect only the rate 
at which  grows or declines. When demographic rates alter monotonically during the 
transition, then the rate at which 

( )t

( )tG
( )tG  changes during the transition can attain any value 

between the initial and final levels of Lotka’s r .  

r

(tEN

 
Numerical simulations show that the most important factor, which affects the 

population size after shifts in fertility timing, is the generation length. Figure 4 presents 
results of simulating the population dynamics with generation length linearly changing 
from initial level of 25 years to the level of 35 years in period from year 150 till year 200. 
Two values of cohort NRR are concerned: 1.05 and 0.95. For both values, two scenarios 
are presented on the figure. In the first scenario (upper graphs on the figure) generation 
length remains at the level attained after the transition and never changes afterwards. In the 
second scenario generation length returns to its original level after second transition. This 
second transition occurs from year 250 until year 300. Period NRRs during the transition 
depend on the intensity of fertility timing changes and are presented on the charts. Figure 5 
illustrates simulation results for the same scenarios with generation length changing from 
the initial level of 35 years to the level of 25 years and then back to its original value. 
Lotka’s  alters following relation to the generation length (8), and the number of 
genealogical lines assumed to follow relation (7) all the period concerned. Births intensity 
and population size are calculated using general relations (2) and (6), and size of the stable 
equivalent population  is estimated from equation (8). Such simulations correspond 
to special type of transitions, when the number of genealogical lines follows the model 
presented above. Yet, results of such simulations still represent the qualitative properties of 
population dynamics with constant cohort NRR and changing fertility timing. 

)

 
All scenarios presented illustrate that population changes during the transitions can 

be described as movement from one global trend to another. The generation length change 
is the most important single factor of population dynamics. Duration and intensity of the 
transition affect only the point where the population converges to the new global trend. 
Lags or overtakes in time schedule occurred during the transition affect the dynamics of 
the number of genealogical lines and prevent the population size from returning to its 
original trend.  

 
Period NRRs, which are presented on the charts, correspond to the population 

changes during the transition and show how quickly population moves from one trend to 
another. This is clearly seen from figure 6, where population dynamics is presented for 
similar transitions, which occur at different speed (0.2, 0.1, 0.05, and 0.04 years of 
generation length change per one calendar year), i.e. during transitions of different length. 
If fertility timing changes very fast, then the situation of paradox proposed by Schoen and 
Jonsson (2003) can arise. In such case, ultimate global trend and dynamics during the 
transition from one trend to another have different directions as reflected in controversial 
values of the cohort and period NRRs.  
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Figure 4. Population dynamics in simulation experiments with generation length changing 
from the initial value of 25 years to 35 years (upper charts) and then back to its original 
value (last two charts). Initially all populations consist of 100 000 genealogical lines. 
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Figure 5. Population dynamics in simulation experiments with generation length changing 
from the initial value of 35 years to 25 years (upper charts) and then back to its original 
value (last two charts). Initially all populations consist of 100 000 genealogical lines. 
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Figure 6. Population dynamics in simulation experiments with generation length changing 
from the initial value of 35 years to 25 years with different speeds (0.2, 0.1, 0.05, and 0.04 
years of generation length change per one calendar year). 
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4. Implications 
 

Our findings show that cohort reproduction measures (the NRR in particular) could be a 
very important source of information about future population trend. With the cohort NRR 
above unity the population will eventually rise. It will eventually decline with the cohort 
NRR below unity. This information cannot be derived directly from period measures. 
Instead, the period measures should be corrected in order to estimate the cohort rates if 
fertility timing alters substantially (see the aforementioned works on fertility postponement 
consequences). Cohort NRRs, however, do not provide full quantitative information about 
long-term population perspectives. They should be supplemented by information about 
fertility timing. The generation length affects both Lotka’s r  and, more important, the 
ultimate population size itself through relations (3) and (10). Cohort reproduction rates 
determine the topology of births, i.e. the structure of the genealogical chart, while the 
fertility timing determines time distribution of births and metrics of the genealogical tree.  

 
The number of genealogical lines crossing a time line is also of value for analyzing 

and modeling the population reproduction. This quantity has convenient properties. In 
particular, direction of its dynamics does not depend on current population structure. It is 
fully determined by the value of the cohort NRR as it is clearly seen from relation (6), 
which can be rewritten as follows: 

 
( ) ( ) ( )( )1−= tNRRtB

dt
tdG

. (11) 
If cohort NRR is above/below unity, then the number of genealogical lines should 
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grow/decline. Hence, dynamics of the number of genealogical lines could be an indicator 
of the population reproduction regimen. In this context the number of genealogical lines is 
close to the demographic potentials (Ediev 2001, 2003a) as the dynamics of latter indexes 
is also not affected by current population structure. Indeed, both concepts coincide in the 
case of the population with cohort NRR equal to unity. The number of genealogical lines 
crossing any given time line equals to expected number of births from the population alive 
at that time. In particular, we have for a person aged x , who was born at time : t

( ) ( )
( ) ( )∫=

X

x
dyt,yf

t,xl
t,ylt,xg

( )t,xg

, (12) 

where  is an expected number of genealogical lines emanating from the birth point of 
the person, which continue till the time when the person ages to the age of x , and ( )t,xf  is 
a fertility function for the cohort born at time t . Total number of genealogical lines for 
arbitrary population can be derived by integrating age-specific coefficients (12) with the 
population age composition. Dynamics of the demographic potential coefficients is given 
by the similar equation: 

( ) ( )
( ) ( ) ( )∫ +=

X

x
dyyt,ct,yf

t,xl
t,ylt,xc 0 , (13) 

where potential of the newborn is a solution of the following integral equation: 

( ) ( ) ( ) ( )∫ +=
X

dyyt,ct,yft,ylt,c
0

00

( ) ( )∫=
X

yft,yltNRR
0

. (14) 

When the cohort  equals to unity, then all solutions of (14) are 

time invariant. Choosing the solution with the newborn’s potential equal to unity, 

( )dyt,

( ) 10 ≡t,c , 
we can turn relation (13) into relation (12) and demonstrate equality of the genealogical 
lines and the demographic potential concepts. 

 
When the cohort NRR is not constant through time or it is not equal to unity, then the 

concepts of genealogical lines and demographic potential differ substantially. Although 
both concepts seem to be helpful in monitoring and modeling the population reproduction, 
the concept of demographic potential provides more precise and more flexible tools of 
population reproduction measurement (Ediev 2001, 2003a, 2003b, 2004, 2005a, 2005b, 
2005c). Main advantage of the demographic potential concept is that both the direction and 
rate of its change do not depend on population structure. On the other hand, the number of 
genealogical lines does not depend on model assumptions about long-term population 
reproduction perspectives. It seems to be a robust indicator of qualitative characteristics of 
the reproduction process. 

 
The number of genealogical lines can not be measured directly as cohort NRR can 

not be obtained until completion of the reproduction history of the cohort. It can be 
approximated, however, using the estimations for cohort NRRs, age-specific demographic 
potentials, and results of the longitudinal surveys revealing the expected number of 
children to be born. 
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Aside from helping to understand the population dynamics, results obtained here are 
helpful in other areas of demographic research as well. Resemblance between the number 
of genealogical lines and the demographic potential brings us to the possibility of 
developing innovative methods of population modeling and forecasting. Population models 
consisted of relations for the demographic potential dynamics and for the dynamics of the 
average demographic potential have proven their efficiency (Ediev 2000, 2001a, 2001b, 
2003a, 2005c). Similar models consisting of sub-models for the number of genealogical 
lines and for the ratio of this quantity to the population size could also be of value in 
demographic studies. 
 
Figure 7. Illustrative genealogical chart of a two-sex population with a genealogical 
paradox: number of genealogical lines (G) for males is higher than the number of 
genealogical lines for females due to the longer generation length (T). Sex ratio at birth is 
set to be unity implying equal births intensity (B) for males and females 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time 
axisGenealogical lines

Marriage lines

Male births

Female births

G males=T males=3
G females=T females=2
B males=B females=1

 
 
An interesting application could be made for two-sex models. Indeed, our results 

bring us to a new two-sex paradox: they imply that the number of male and female 
genealogical lines in the population should substantially differ even when the stationary 
population is concerned. Given the sex ratio at birth , one can derive from relation (1) for 
the stationary population: 

γ

females

males

females

males

G
G

µ
µ

γ= , (15) 

hereinafter we omit the time variable for stationary populations. As the mean age at 
childbearing is usually higher for males, and the sex ratio at birth is above unity, we obtain 
from (15) that the number of male genealogical lines should substantially exceed the 
number of female genealogical lines in a stationary population. If, for example, the mean 
age at childbearing is 28 for females and 30 for males, and the sex ratio at birth equals to 
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1.055, then the number of male genealogical lines will exceed the number of female 

genealogical lines by the product of 131
28
30055 .. =⋅1 , i.e. by 13% (!). Figure 7 illustrates 

how such a paradoxical situation can exist. Similar results can be obtained for a stable 
population from relation (9). These results have further implications for population 
genetics. They could explain the source of higher genetic diversity among males. As the 
size of the genetic pool seems to be proportional to the number of genealogical lines, male 
population can support higher genetic diversity than the female population. This question 
deserves further study, however, as the genetic diversity is also affected by the topology of 
the real genealogical tree. 

 
Another implication for population genetics concerns the evolutionary theory of 

ageing. From relation (3) we have for the number of genealogical lines of a stationary 
population: 

0e
NG ⋅µ

= . (16) 

Hence, genetic diversity in a stationary population is proportional to its size and to the 
mean age at childbearing and reciprocal to the life expectancy at birth. The population size 
is given by the ecological capacity. Therefore, the genetic diversity is determined by the 
ratio of the mean age at childbearing to the life expectancy at birth. This could explain 
wide variety of life expectancies in the nature: the life expectancy alone does not matter for 
the genetic diversity. Genetic diversity is a competitive advantage for a species. Hence, 
ratio of the mean age at childbearing to the life expectancy at birth should be maximized 
during the evolutionary process. This ratio cannot exceed the unity, however, if parents do 
not die before giving the last birth. Under such circumstances, the maximum genetic 
diversity will be attained if the fertile ages are close to the life expectancy at birth. Hence, 
zero fertility at young ages and genetic mechanisms of ageing after attaining the upper 
fertile ages could be interpreted as evolutionary advantages. 
 
 
5. Conclusion 

 
Along with cohort rates, period measures are also of importance for forecasting and 
modeling the population dynamics. We agree with Schoen and Jonsson, who showed that 
population dynamics could deviate from the dynamics determined by the cohort NRR 
during considerably long periods. However, our results show that duration and intensity of 
the transition have no effect on final population trend, except for moderate effect on the 
genealogical lines dynamics in the case of NRR different from unity. Intensity of the 
transition determines only how fast the population will pass from one global trend to 
another. Hence, analysis of the period data is valuable for modeling and forecasting the 
short-term population perspectives while keeping in mind the long-term population 
asymptote determined by the cohort indicators. This brings us to the point that it is the 
combination of period and cohort perspectives, which provides adequate tools of 
demographic analysis. 

 
Relations obtained in the paper are of importance per se as they allow better 

understanding the population dynamics and could have important implications in many 
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fields of population research including population forecasting, population policy, 
reproduction analysis, population genetics, and evolutionary genetics. 
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