|  |  | Results<br>00<br>00 |  |
|--|--|---------------------|--|
|  |  |                     |  |
|  |  |                     |  |

### The Long-Term Effect of Poverty on Obesity

Martina Celidoni\* and Salmasi Luca\*\*

\*Department of Economics University of Padua \*\*Department of Medicine University of Perugia

Health, Education and Retirement over the Prolonged Life Cycle

Vienna 27-29 November 2013

| Introduction |             |        |  | Results<br>00<br>00 |  |
|--------------|-------------|--------|--|---------------------|--|
|              |             |        |  |                     |  |
| The Povert   | y-Obesity P | aradox |  |                     |  |

From the New York Times (March 12, 2010), The Obesity-Hunger Paradox

When most people think of hunger in America, the images that leap to mind are of ragged toddlers in Appalachia or rail-thin children in dingy apartments reaching for empty bottles of milk. Once, maybe. [..] the hungriest people in America today, statistically speaking, may well be not sickly skinny, but excessively fat.

Hunger is certainly almost an exclusive symptom of poverty, but **also obesity can be considered one flip side of the same malnutrition coin**, especially in developed countries.

Does poverty increase the chances of being obese?

| Introduction |    |  | Results<br>00<br>00 |  |
|--------------|----|--|---------------------|--|
|              |    |  |                     |  |
| Introductio  | on |  |                     |  |

- Obesity has drawn the attention because it has registered epidemic proportions and relevant economic and public health consequences (Cutler et al., 2003, Philipson & Posner, 2008, Brunello et al., 2009, Bhattacharya & Sood, 2011, World Health Organization, 2007).
- OECD (2012) reports that, since 1980, obesity rates have doubled or even tripled in many countries and in more than half of OECD countries, 50% or more of the population is now overweight, if not obese.
- If governments aim to tackle the phenomenon, the true causes, either sociodemographic or economic, have to be assessed.

| Introduction |    |  | Results<br>00<br>00 |  |
|--------------|----|--|---------------------|--|
|              |    |  |                     |  |
| Introducti   | on |  |                     |  |

The economic literature analysed  $BMI = weight / height^2$ , and overweight (25 < BMI < 30) and obesity (BMI > 30).

Education, information and income identified as main determinants where policy interventions are possible.

According to Brunello et al. (2011) the main public interventions proposed so far are information campaigns, advertising and labelling rules and regulations on nutritional claims. But it is still not clear whether information can effectively induce people to make healthier choices.

- Information deficiencies are not a major issue (Brunello et al. 2009).
- Obesity seems to be **concentrated among disadvantaged persons**, who are aware that obesity is bad for their health but have less incentive to invest in their health Philipson & Posner (2008).
- Policy interventions in this context, based on **equity considerations**, are justified only if aimed at reducing inequalities, **driven by circumstances**, **beyond individuals' control**, that make people more likely to be obese.

|              | Literature |  | Results<br>00<br>00 |  |
|--------------|------------|--|---------------------|--|
|              |            |  |                     |  |
| Literature I |            |  |                     |  |

According to the economic models of body weight (Lakdawalla and Philipson, 2002, Cawley, 2004), the effect of income on weight depends on how income affects food consumption and time allocation (Cawley et al., 2010):

- Caloric food could be an inferior good because of its quality
- Health and slimness are normal goods so as income rises people consume less energy-dense food in order to lose weight

In the literature: the effect of income and obesity (or BMI<sup>1</sup>); causality very rare:

- Cawley et al. (2010):
  - Low-income elderly;
  - Natural experiment in the US (Social Security Benefits Notch automatic double indexation of credited earnings in a period of high inflation)
  - No effects for the elderly on the probability to be overweight or obese
  - Main problems: The outcome is weight (the stock of past consumption) so lifetime income streams are likely to have some effects rather than contemporaneous income

<sup>1</sup>Computed as  $kg/m^2$ 

(日) (同) (三) (

|            | Literature |  | Results<br>00<br>00 |  |
|------------|------------|--|---------------------|--|
|            |            |  |                     |  |
| Literature |            |  |                     |  |

- Schmeiser (2009):
  - Variation across states in the generosity of the Earned Income Tax Credit (EITC)
  - Income is found to significantly decrease BMI and probability of being obese for women with EITC-eligible earnings, and have no appreciable effect for men with EITC-eligible earnings
  - Main problems: Rather specific group of low income workers
- Quintana-Domeque (2005):
  - European Community Household Panel;
  - exogenous variation in family income resulting from receipt of inheritance, gifts, or lottery winnings of 2000 Euros or more as (weak) instrument for income;
  - In Denmark and Italy (women) and Finland (men) the estimated BMI-income elasticity is negative.
  - Main problems: Weak instrument

|      | Data |  | Results<br>00<br>00 |  |
|------|------|--|---------------------|--|
|      |      |  |                     |  |
| Data |      |  |                     |  |

We use data from various sources:

- For individual level data we use SHARE (Survey on Health Ageing and Retirement in Europe) wave 2 (2006) and wave 4 (2010) and ELSA (English Longitudinal Survey on Ageing) wave 2 (2006) and wave 4 (2010).
- We also used SHARE and ELSA waves 3 (2008) to merge information about individual early-life conditions.
- For regional level data we merged information from EUROSTAT, the ESPON Database, Eurobarometer and Cambridge Econometrics.

|           |            | Empirical Strategy | Results<br>00<br>00 |  |
|-----------|------------|--------------------|---------------------|--|
|           |            |                    |                     |  |
| Empirical | Strategy I |                    |                     |  |

Let's consider the following standard specification:

$$obese_{it} = \beta_0 + \beta_1 poor_{it} + X^T \beta + \epsilon_{it}$$
(1)

we are interested in  $\beta_1$ , the coefficient that captures the effect of *being poor* on the probability to be obese.

OLS estimates of  $\beta_1$  are unbiased if  $E[poor_i \epsilon_i] = 0$  but unlikely to be true because of:

- unobservable individual factors (e.g., self-control, motivation, risk attitude);
- reverse causality (high health expenditures or productivity);
- measurement errors (self-reported Body Mass Index BMI).

|           |             | Empirical Strategy | Results<br>00<br>00 |  |
|-----------|-------------|--------------------|---------------------|--|
|           |             |                    |                     |  |
| Empirical | Strategy II |                    |                     |  |

• Obesity: recursive bivariate probit model

$$obese_{it} = \alpha_0 + \alpha_1 poor_{it} + X^{\mathsf{T}} \alpha + \epsilon_{1,it}$$
  
$$poor_{it} = \beta_0 + Z^{\mathsf{T}} \beta' + X^{\mathsf{T}} \beta'' + \epsilon_{2,it}$$
(2)

$$E[\epsilon_{1,it}] = E[\epsilon_{2,it}] = 0$$
,  $Var[\epsilon_{1,it}] = Var[\epsilon_{2,it}] = 1$  and that  $Cov[\epsilon_{1,it}] = Cov[\epsilon_{2,it}] = \rho$ 

• BMI: two stages least squares

$$BMI_{it} = \alpha_0 + \alpha_1 poor_{it} + X^T \alpha + \epsilon_{1,it}$$
  
$$poor_{it} = \beta_0 + Z^T \beta' + X^T \beta'' + \epsilon_{2,it}$$
(3)

Image: Image:

- ∢ ≣ ▶

|             |        | Empirical Strategy | Results<br>00<br>00 |  |
|-------------|--------|--------------------|---------------------|--|
|             |        |                    |                     |  |
| Identificat | tion I |                    |                     |  |

We need to define a theory of how poverty is determined:

$$poor_{it} = \lambda_0 + poor_0^T \lambda' + X^T \lambda'' + \epsilon_{it}$$
(4)

- According to the literature poverty is path-dependent.
- Current poverty status is the result of **circumstances** (e.g. region of residence or family background) and effort (Checchi et al., 2010, Fleurbaey 2008). Circumstances are determinants **external to, and coercive over individuals** (Beeghley 1988), that constrain the range of options available to people (Cotter 2002).
- poor<sub>0</sub> is ideally composed by family and regional poverty at birth and is a natural instrument for poverty at time t, because it can reasonably be excluded from the obesity equation, after controlling for current individual and regional characteristics.

|             |        | Empirical Strategy | Results<br>00<br>00 |  |
|-------------|--------|--------------------|---------------------|--|
|             |        |                    |                     |  |
| Identificat | ion II |                    |                     |  |

Unfortunately we do not observe  $poor_0$ , but using a strategy similar to that applied by Tabellini (2010), we can substitute  $poor_0$  with  $X_0$ , where  $X_0$  are past values of X variables, which by construction are correlated with  $poor_{it}$ .

Our final specification for the poverty equation will be the following:

$$poor_{it} = \lambda_0 + X_0^T \eta + X^T \lambda + v_{it}$$
(5)

イロト イポト イラト イ

 $X_0$  is the matrix of instruments including:

- the logarithm of regional gross value added in 1977 (LGVA77)
- a dummy equal to one if the number of books available in the household when the individual was 10 years old was lower than 10 (Few books).

|  | Empirical Strategy | Results<br>00<br>00 |  |
|--|--------------------|---------------------|--|
|  |                    |                     |  |

### Covariates I: Individual variables

| Variables                   |                       | %    | Mean  | Source     |
|-----------------------------|-----------------------|------|-------|------------|
| Age                         |                       |      | 65.93 | ELSA/SHARE |
| Education                   | Low                   | 0.63 |       | ELSA/SHARE |
|                             | Secondary             | 0.26 |       | ELSA/SHARE |
|                             | High                  | 0.11 |       | ELSA/SHARE |
| Occupation                  | Employed              | 0.46 |       | ELSA/SHARE |
|                             | Unemployed            | 0.04 |       | ELSA/SHARE |
|                             | Retired               | 0.5  |       | ELSA/SHARE |
| Smoker                      | No                    | 0.91 |       | ELSA/SHARE |
|                             | Yes                   | 0.09 |       | ELSA/SHARE |
| Chronic diseases            | No                    | 0.29 |       | ELSA/SHARE |
|                             | Yes                   | 0.71 |       | ELSA/SHARE |
| Limitations                 | No                    | 0.98 |       | ELSA/SHARE |
|                             | Yes                   | 0.02 |       | ELSA/SHARE |
| Poor Health                 | No                    | 0.91 |       | ELSA/SHARE |
|                             | Yes                   | 0.09 |       | ELSA/SHARE |
| Sick or disable             | No                    | 0.96 |       | ELSA/SHARE |
|                             | Yes                   | 0.04 |       | ELSA/SHARE |
| Physical activity frequency | Less than once a week | 0.71 |       | ELSA/SHARE |
| ,                           | At least once a week  | 0.29 |       | ELSA/SHARE |
| Children                    | No                    | 0.65 |       | ELSA/SHARE |
|                             | Yes                   | 0.35 |       | ELSA/SHARE |
| Wave                        | 2                     | 0.45 |       | ELSA/SHARE |
|                             | 4                     | 0.55 |       | ELSA/SHARE |
| Country of residence        | Germany               | 0.12 |       | SHARE      |
|                             | Netherlands           | 0.12 |       | SHARE      |
|                             | Spain                 | 0.12 |       | SHARE      |
|                             | Italy                 | 0.13 |       | SHARE      |
|                             | France                | 0.14 |       | SHARE      |
|                             | Belgium               | 0.13 |       | SHARE      |
|                             | England               | 0.24 |       | ELSA       |

Image: A matrix and a matrix

|  | Empirical Strategy | Results<br>00<br>00 |  |
|--|--------------------|---------------------|--|
|  |                    | 00                  |  |

### Covariates II: Regional and Instrumental variables

| Variables                                                                               | Modalities | %    | Mean   | Source                    |
|-----------------------------------------------------------------------------------------|------------|------|--------|---------------------------|
| Regional growth rate between 1977-2006                                                  |            |      | 0.09   | Cambridge<br>Econometrics |
| % of people who think that overweight and obesity are bad for health                    |            |      | 0.79   | Eurobarometer             |
| % of people who think that overweight<br>and obesity are mainly inherited               |            |      | 0.23   | Eurobarometer             |
| % of individuals do not eat healthy<br>because of lack of information on food<br>labels |            |      | 0.08   | Eurobarometer             |
| % of individuals do not eat healthy because of lack of lack of control                  |            |      | 0.08   | Eurobarometer             |
| % of people who enjoy eating                                                            |            |      | 0.60   | Eurobarometer             |
| % of people who eat healthy                                                             |            |      | 0.36   | Eurobarometer             |
| Accessibility index                                                                     |            |      | 0.43   | ESPON Db                  |
| % of people who are satisfied with<br>health services                                   |            |      | 0.53   | ESPON Db                  |
| Climate index                                                                           |            |      | 52.77  | ESPON Db                  |
| Number of hospital beds /10,000 individuals                                             |            |      | 562.32 | Eurostat                  |
| Log of regional gross value added in 1977                                               |            |      | 4.55   | Cambridge<br>Econometrics |
| Number of books in household at age 10 lower than 10                                    |            | 0.39 |        | ELSA/SHARE                |

ъ

・ロト ・回ト ・ヨト ・

|  |  | Preliminaries | Results<br>00<br>00 |  |
|--|--|---------------|---------------------|--|
|  |  |               |                     |  |

#### Percentage of obese individuals 2006-2010, by decile and gender

|        | Me          | n          | Women       |            |  |
|--------|-------------|------------|-------------|------------|--|
| Decile | Average BMI | % of obese | Average BMI | % of obese |  |
| 1      | 27.31       | 0.23       | 27.08       | 0.26       |  |
| 2      | 27.36       | 0.23       | 27.13       | 0.26       |  |
| 3      | 27.26       | 0.23       | 26.99       | 0.26       |  |
| 4      | 27.03       | 0.2        | 26.74       | 0.23       |  |
| 5      | 27.03       | 0.21       | 26.65       | 0.23       |  |
| 6      | 27.08       | 0.21       | 26.36       | 0.2        |  |
| 7      | 26.96       | 0.19       | 26.09       | 0.19       |  |
| 8      | 26.76       | 0.17       | 25.7        | 0.17       |  |
| 9      | 26.92       | 0.19       | 25.61       | 0.16       |  |
| 10     | 26.81       | 0.17       | 25.6        | 0.15       |  |

Notes: Deciles based on equivalent income by country

|         |  |  | Results    |  |
|---------|--|--|------------|--|
|         |  |  | <b>0</b> 0 |  |
| Obesity |  |  |            |  |
|         |  |  |            |  |

# Impact of poverty on obesity, univariate probit

|                  | М                    | en                   | Women                |                      |  |
|------------------|----------------------|----------------------|----------------------|----------------------|--|
|                  | (1)                  |                      | (1)                  | (2)                  |  |
| poor             | 0.030***<br>(0.0089) | 0.029***<br>(0.0092) | 0.035***<br>(0.0088) | 0.034***<br>(0.0089) |  |
| Observations     | 12,573               | 12,573               | 15,125               | 15,125               |  |
| group1<br>group2 | yes<br>no            | yes y<br>yes r       |                      | yes<br>yes           |  |

< 17 ▶

-∢ ≣ ▶

|         |  |  | Results<br>O●<br>○○ |  |
|---------|--|--|---------------------|--|
| Obesity |  |  |                     |  |

# Impact of poverty on obesity, bivariate probit

|                           | М         | en                   | Women                |                      |  |
|---------------------------|-----------|----------------------|----------------------|----------------------|--|
|                           | (1)       | (2)                  | (1)                  | (2)                  |  |
|                           | Impact of | instruments on pov   | verty                |                      |  |
| Log GVA 1977              | -0.097**  | -0.096***            | -0.122***            | -0.133***            |  |
| -                         | (0.0394)  | (0.0276)             | (0.0297)             | (0.0241)             |  |
| Few books                 | 0.0799*** | 0.081** <sup>*</sup> | 0.055** <sup>*</sup> | 0.054** <sup>*</sup> |  |
|                           | (0.0104)  | (0.0103)             | (0.0104)             | (0.0103)             |  |
|                           | Impact    | of poverty on obesi  | ty                   |                      |  |
| poor                      | 0.174**   | 0.168**              | 0.221***             | 0.226***             |  |
|                           | (0.0735)  | (0.0686)             | (0.0437)             | (0.0429)             |  |
| ρ                         | -0.293    | -0.303               | -0.398               | -0.413               |  |
| Wald test of $\rho = 0$ : | 4.018     | 3.713                | 14.251               | 15.433               |  |
| Prob > Chi-squared        | 0.0451    | 0.0541               | 0.0002               | 0.0001               |  |
| Observations              | 12,612    | 12,612               | 15,106               | 15,106               |  |
| group1                    | yes       | yes                  | yes                  | yes                  |  |
| group2                    | no        | yes                  | no                   | yes                  |  |

Celidoni M. and Salmasi L.

|     |  |  | Results<br>○○<br>●O |  |
|-----|--|--|---------------------|--|
| BMI |  |  |                     |  |
|     |  |  |                     |  |

# Impact of poverty on BMI, OLS

|                  | М                  | en                | Women             |                   |  |
|------------------|--------------------|-------------------|-------------------|-------------------|--|
|                  | (1) (2) (1)        |                   | (1)               | (2)               |  |
| poor             | 0.0004<br>(0.0411) | 0.015<br>(0.0406) | 0.034<br>(0.0359) | 0.032<br>(0.0352) |  |
| Observations     | 13,071             | 13,071            | 15,629            | 15,629            |  |
| group1<br>group2 | yes<br>no          | yes<br>yes        | yes<br>no         | yes<br>yes        |  |

< ロ > < 回 > < 回 > <</p>

|     |  |  | Results<br>○○<br>○● |  |
|-----|--|--|---------------------|--|
| BMI |  |  |                     |  |
|     |  |  |                     |  |

# Impact of poverty on BMI, IV

|                                  | Men             |                | Women                |           |
|----------------------------------|-----------------|----------------|----------------------|-----------|
|                                  | (1)             | (2)            | (1)                  | (2)       |
| Impac                            | ct of instrumer | nts on poverty |                      |           |
| Log GVA 1977                     | -0.102**        | -0.107***      | -0.122***            | -0.134*** |
|                                  | (0.0398)        | (0.0341)       | (0.0324)             | (0.0277)  |
| Few books                        | 0.0846***       | 0.0851***      | 0.052** <sup>*</sup> | ò.051***  |
|                                  | (0.0122)        | (0.0123)       | (0.0108)             | (0.0108)  |
| F-statistic                      | 32.81           | 36.45          | 22.61                | 26.54     |
| In                               | npact of pover  | ty on BMI      |                      |           |
| poor                             | 0.458           | 0.471          | 0.626                | 0.679     |
| -                                | (0.4135)        | (0.367)        | (0.483)              | (.4221)   |
| Observations                     | 12,612          | 12,612         | 15,106               | 15,106    |
| Overidentification test (Hansen) | 0.0000          | 0.1235         | 0.4003               | 0.4731    |
| group1                           | yes             | yes            | yes                  | yes       |
| group2                           | no              | yes            | no                   | yes       |

・ロト ・回ト ・ヨト ・

|           |          |  | Results<br>00<br>00 | Robustness checks |
|-----------|----------|--|---------------------|-------------------|
|           |          |  |                     |                   |
| Robustnes | s checks |  |                     |                   |

Potential problems:

- Migration effects: individuals who moved among regions could bias our results.
   → we performed the analysis on a subsample of individuals who lived in the same region for at least 30 years. Results do not change significantly.
- Other regional factors, beyond those included in the model.  $\rightarrow$  A strategy to evaluate the presence of regional omitted factors can be multilevel analysis.
- Multilevel models allow to estimate the fraction of variance due to regional characteristics left unexplained, after controlling for group 2 covariates.

|  |  |          | Robustness checks |
|--|--|----------|-------------------|
|  |  | 00<br>00 |                   |
|  |  |          |                   |

### Robustness checks: individuals who lived in the same region for more than 30 years

|                                  | Men      | Women    |
|----------------------------------|----------|----------|
|                                  | (2)      | (2)      |
| Univariate Probit                | 0.027**  | 0.036*** |
|                                  | (0.0125) | (.0129)  |
| Bivariate Probit                 | 0.189*** | 0.245*** |
|                                  | (0.0618) | (0.0638) |
| ρ                                | -0.346   | -0.449   |
|                                  |          |          |
| Wald test of $\rho = 0$ :        | 5.928    | 7.497    |
| Prob > Chi-squared               | 0.0149   | 0.0062   |
| OLS                              | 0.006    | 0.007    |
| OES                              | (0.0582) | (0.0543) |
| 11/                              | · · ·    |          |
| IV                               | 0.326    | 0.608    |
|                                  | (0.4895) | (0.7513) |
| F-statistic                      | 26.28    | 15.89    |
| Overidentification test (Hansen) | 0.067    | 0.4467   |
| Observations                     | 5,056    | 6,168    |
|                                  |          |          |

< 17 >

|  |  |  | Results<br>00<br>00 | Robustness checks |
|--|--|--|---------------------|-------------------|
|  |  |  |                     |                   |

# Robustness checks: Multilevel Logistic regression

|                                             | Ν                    | Ven                    | Women                |                      |  |
|---------------------------------------------|----------------------|------------------------|----------------------|----------------------|--|
| $\sigma_u$                                  | <b>(1)</b><br>0.0573 | <b>(2)</b><br>< 0.0001 | <b>(1)</b><br>0.0998 | <b>(2)</b><br>0.0015 |  |
| ρ                                           | 0.01                 | < 0.0001               | 0.0031               | < 0.0001             |  |
| LR-test of $\rho = 0$<br>Prob > Chi-squared | 0.394                | 0.99                   | 0.168                | 0.492                |  |
| Observations                                | 12,573               | 12,573                 | 15,125               | 15,125               |  |

< □ > < 同 >

- ∢ ≣ ▶

|  |  | Results<br>00<br>00 | Robustness checks |
|--|--|---------------------|-------------------|
|  |  |                     |                   |

Thanks for your attention!



Celidoni M. and Salmasi L.

・ロト ・回ト ・ヨト ・