

Education and Health: The Role of Cognitive Ability

Govert Bijwaard¹ Hans van Kippersluis²

¹Netherlands Interdisciplinary Demographic Institute (NIDI)

²Erasmus University Rotterdam, Erasmus School of Economics Tinbergen Institute Rotterdam Netspar, Tilburg, The Netherlands

Health, Education and Retirement over the Prolonged Life Cycle, Nov. 27-29, 2013, Vienna

Motivation ●000	Model 0000000	Data	Result	Conclusion
Motivation				

- Differences in health and life expectancy across educational groups are striking and pervasive.
- Recent results deriving from natural experiments in education suggest that causal effect of education on health is small or even absent (e.g. Lleras-Muney, 2005; Van Kippersluis et al. 2011; Meghir et al. 2012; Clark and Royer, 2013)
- Suggest an important role for confounding factors, such as discount rates, cognitive and non-cognitive skills (Murasko, 2007; Carneiro et al. 2007)

Motivation o●oo	Model oooooooo	Data	Result	Conclusion
Motivation (2)			

- Established that cognitive ability and some non-cognitive factors such as self-esteem are associated with health outcomes at ages 30-40 (Elias, 2004; Auld and Sidhu, 2005; Murasko, 2007; Carneiro et al. 2007; Kaestner and Collison, 2011)
- Nonetheless, hardly anything is known about how much of the association between education and health is explained by these cognitive and non-cognitive abilities.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

One notable exception: series of papers by Conti and Heckman (2010), Conti et al. (2010; 2011), and Heckman et al. (2011) in which they:

- estimate a structural equation model modeling the interdependence between education, health, and latent factors capturing cognitive and non-cognitive abilities.
- use the British Cohort Study with self-reported health outcomes measured around age 30
- show that around half of the association is due to the causal effect of education on health outcomes, other half is selection

Motivation ○○○●	Model 0000000	Data	Result	Conclusion
Our contribut	ion			

Disentangle the effects of education and cognitive ability on health outcomes, using a multistate structural equation model

Contribution is twofold:

- We observe mortality and hospitalization between ages 55 and 75 as objective health indicators
- Extend structural equation model by Conti et al. (2010) to allow for duration dependent variables (multistate); time to death, time to hospitalization and time till discharge from hospital

Motivation 0000	Model ●ooooooo	Data	Result	Conclusion
Basic model:	educational cho	bice		

Assume a probit model for educational choice:

Let $D_i = 1$ if the individual enters secondary education, and 0 otherwise.

$$D_i = egin{cases} 1 & ext{if } D_i^* \geq 0 \ 0 & ext{otherwise} \end{cases}$$

Underlying latent utility for education depends on observed characteristics X^D and latent cognitive ability θ .

$$D_i^* = \gamma X_i^D + \alpha_D \theta + \upsilon_D$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with v_D independent of X_i^D and θ

0000	0000000	Data	Result	Conclusion
Basic model	notential outco	mes		

Two potential outcomes Y_{i1} and Y_{i0} depending on educational choice, with observed outcome Y_i

$$Y_i = D_i Y_{i1} + (1 - D_i) Y_{i0}$$

Where both Y_{i1} and Y_{i0} depend on exogenous characteristics X^{Y} and on latent cognitive ability θ .

$$\begin{array}{rcl} Y_{i0} & = & \beta_0 X_i^Y + \alpha_0 \theta + \upsilon_0 \\ Y_{i1} & = & \beta_1 X_i^Y + \alpha_1 \theta + \upsilon_1 \end{array}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with (v_0, v_1) are independent of X^Y and ability θ .

Motivation 0000	Model oo●ooooo	Data	Result	Conclusion
Basic model:	measurements			

Measurements for the ability

$$M_{i,1} = \delta_1 X_i^M + \alpha_{1,M} \theta + \upsilon_{1,M}$$

$$\vdots$$

$$M_{i,N} = \delta_N X_i^M + \alpha_{N,M} \theta + \upsilon_{N,M}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with v_M independent of X_i^M and θ and $v_M \sim \mathcal{N}(0, \sigma_M^2)$ θ is assumed to be discrete (3 level)-ability with $Pr(\theta_l) = p_l$ For identification: $\alpha_{1,M} = 1$ and $E(\theta) = 0$

Basic model: graphical representation

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - のへで

Motivation 0000	Model ○○○○●○○○	Data	Result	Conclusion
Multistate				
Multistate mo	del			

In our case, the outcome (mortality, time to discharge/admission) is a duration, and we have 8 potential hazards $\lambda^{(1)}$ and $\lambda^{(0)}$, with (for each transition) the observed hazard:

$$\lambda(t_i) = \lambda^{(1)}(t_{i1})^{D_i} \cdot \lambda^{(0)}(t_{i0})^{1-D_i}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with t_{i1} is the duration for an individual with high education $(D_i = 1)$ and t_{i0} is the duration for an individual with low education $(D_i = 0)$.

Multistate model: Y_0 , Y_1 transition rates

Motivation 0000	Model ○○○○○○●○	Data	Result	Conclusion
Multistate				
Hazards N	Aultistate mode			

Assume **Gompertz** proportional hazard from the healthy state:

$$\begin{aligned} \lambda_{HI}^{(k)}(t_i|X,\theta) &= e^{\beta_{kHI0} + a_{kHI}t_i} \exp(\beta_{kHI}X_i + \alpha_{kHI}\theta) \\ \lambda_{HD}^{(k)}(t_i|X,\theta) &= e^{\beta_{kHD0} + a_{kHD}t_i} \exp(\beta_{kHD}X_i + \alpha_{kHD}\theta) \end{aligned}$$

and **exponential: piecewise constant hazard** from the illness state

$$\lambda_{IH}^{(k)}(\tau_i|X, t_i, \theta) = e^{\beta_{kIH0} + \sum_j a_{kIH,j} l_j(\tau)} \exp(\beta_{kIH}X_i + \alpha_{kIH}\theta)$$

$$\lambda_{ID}^{(k)}(\tau_i|X, t_i, \theta) = e^{\beta_{kID0} + \sum_j a_{kID,j} l_j(\tau)} \exp(\beta_{kID}X_i + \alpha_{kID}\theta)$$

for k = 0, 1 (education), t is age and τ is time in hospital (in days)

Motivation 0000	Model ○○○○○○●	Data	Result	Conclusion
Multistate				
Gains from (-hanging sch	nool level		

Use estimated model to derive effects of changing education:

$$\begin{aligned} ATE(t) &= \int \int \mathrm{E} \big[Y_1(t) - Y_0(t) | X = x, \theta \big] dF_{X,\theta}(x, f) \\ ATET(t) &= \int \int \mathrm{E} \big[Y_1(t) - Y_0(t) | X = x, \theta, D = 1 \big] dF_{X,\theta|D=1}(x, f) \\ ATEU(t) &= \int \int \mathrm{E} \big[Y_1(t) - Y_0(t) | X = x, \theta, D = 0 \big] dF_{X,\theta|D=0}(x, f) \end{aligned}$$

with $Y_1(t)$, $Y_0(t)$ many desired outcomes, e.g. survival, life-expectancy, # of hospitalizations, probability ever in hospital.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Use simulation based on estimated coefficients.

Motivation	Model	Data	Result	Conclusion

"Brabant" Data and mortality and hospitalization

Survey in 1952 among pupils of the sixth grade of primary schools in the Dutch province of Noord-Brabant.

- Detailed info on individual intelligence, social background and school achievement (N = 5,823)
- Follow-up surveys in 1957, 1983 and 1993 providing labour market behaviour (*N* = 2, 998)
- Linkage to administrative records (Stat NL) municipality-, cause of death- and hospital discharge register Providing mortality and demographics (1995-2010) and admission and discharge of hospitals, whether it was acute (1995-2005) (N = 2579)

Motivation 0000	Model 0000000	Data	Result	Conclusion
2	 			

Descriptive statistics

	Low-educated	High-educated
	48%	52 %
Mortality		
died	16%	12%
% died in hospital	23%	18%
Hospitalization		
# hospital stays	2.4	1.8
emergency	25%	25%
length of stay (days)	4.3	4.8
Intelligence		
IQ	95.2	107.6
Male	57%	59 %
Child works	37%	18%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Kaplan-Meier survival, by education level

age

・ロト ・ 日 ・ ・ モ ト ・ ・

Ę

≣⇒

Cumulative Number of hospital visits, by education level

age

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへの

Cumulative incidence from Healthy, by education level

◆□> ◆□> ◆三> ◆三> 三三 のへで

Cumulative incidence from Hospital, by education level

◆□> ◆□> ◆三> ◆三> ● ○ のへで

Parameter estimates (selection)

	α	male	workchild	brank5	Prot.	acute
Education	-1.33^{*}	0.04	-0.21^{*}	-0.11	0.49*	_
Hazards						
from healthy						
$\lambda_{HI}^{(0)}$	-6.47*	0.40*	-0.19^{*}	0.53*	—	_
$\lambda_{HI}^{(1)}$	-5.65^{*}	0.37*	-0.08	-0.24^{*}	—	—
$\lambda_{HD}^{(0)}$	-4.62*	1.05*	0.28	0.20	—	—
$\lambda_{HD}^{(1)}$	-4.48^{*}	0.59*	-0.02	-0.83^{*}	—	-
from ill						
$\lambda_{IH}^{(0)}$	-0.12	0.02	-0.21^{*}	0.04	—	-0.83*
$\lambda_{IH}^{(1)}$	0.77*	-0.03	0.11	-0.15	—	-0.67^{*}
$\lambda_{ID}^{(0)}$	-0.56	0.48	-0.19	-0.02	—	2.05*
$\lambda_{ID}^{(1)}$	-0.63	0.23	-0.39	-0.30	—	1.01*
Measurement	1	-0.92	-3.81*	-3.03*	5.18*	_

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Survival gain for high educated

Ę

Decomposition of observed difference in Kaplan-Meier survival function in treatment effect and selection effect

Gain in number of hospital visits

▲口▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - のへで

Gain ever in hospital

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○ ○

Motivation 0000	Model 0000000	Data	Result	Conclusion
Conclusion				

• Gain of education High educated live longer and are less frequent in hospital

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Latent (cognitive) skills (selection)
 - Survival

Positive selection, explains up to 50%

• Ever in hospital/number of hospitalizations Negative selection, increases education gain