Heterogeneity, variance, and factorial variance components

Hal Caswell
Silke van Daalen

Institute for Biodiversity and Ecosystem Dynamics
University of Amsterdam
Wittgenstein Center Conference 2023
Exploring Population Heterogeneities

Heterogeneity and variance

- what's coming
- variance partitioning
- a new method: multiple factors and their interactions
- some examples: longevity, sex, race, location
- new ways of thinking about the mixing distribution, and why it is your friend

Heterogeneous populations are mixtures

Population

$$
\begin{aligned}
\text { group } & =1 & & \text { group }
\end{aligned}=G
$$

$$
\pi=\text { mixing distribution }
$$

Probability distribution of ξ in the population is a mixture of the distributions in each group

Heterogeneous populations are mixtures

Population

$$
\begin{align*}
& E(\xi)=E_{\boldsymbol{\pi}}(m) \tag{0}\\
& V(\xi)=E_{\boldsymbol{\pi}}(v)+V_{\boldsymbol{\pi}}(m)
\end{align*}
$$

$$
\begin{align*}
& \text { group }=1 \\
& \text { proportion }=\pi_{1} \tag{0}\\
& E(\xi \mid \text { group }=1)=m_{1} \\
& V(\xi \mid \text { group }=1)=v_{1} \\
& \text { group }=G \\
& \text { proportion }=\pi_{G} \\
& E(\xi \mid \text { group }=G)=m_{G} \\
& V(\xi \mid \text { group }=G)=v_{G}
\end{align*}
$$

Variance partitioning: within and between groups ${ }^{1}$

$$
V(\xi)=\underbrace{E_{\boldsymbol{\pi}}[V(\xi \mid \text { group })]}_{\text {within-group }}+\underbrace{V_{\boldsymbol{\pi}}[E(\xi \mid \text { group })]}_{\text {between-group }}
$$

- within-group = stochasticity
- between-group = heterogeneity
- variance ratio $=$ contribution of heterogeneity

$$
\mathcal{K}=\frac{V_{\text {between }}}{V_{\text {within }}+V_{\text {between }}}
$$

[^0]
Demographic outcomes

$\xi=$ longevity. Moments from Markov chains (Feichtinger 1971, Caswell 2001, 2009)
$\xi=$ lifetime fertility. Moments from Markov chain with rewards (Caswell 2011, van Daalen and Caswell 2015, 2017)
$\xi=$ "healthy" longevity. Moments (prevalence and incidence) from Markov chains with rewards (Caswell and Zarulli 2018, Zarulli and Caswell 2022, Caswell and van Daalen 2021)

But ... how many factors?

- most studies look at one factor at a time ${ }^{2}$
- combinations of multiple factors: variance is due to:
- each factor and
- all interactions between factors
- method available for multi-factor studies
- any number of factors
- any number of levels
- any demographic outcome ξ that has means and variances

[^1]
Mixture distributions extended to multiple (two) factors

Factor A at N_{A} levels, factor B at N_{B} levels.

Variance components:

$$
\begin{aligned}
V(\xi) & =V_{\text {within }}+\underbrace{V_{\text {between }}}_{V_{A}+V_{B}+V_{A B}} \\
V_{A} & =\text { variance due to } \mathrm{A} \\
V_{B} & =\text { variance due to } \mathrm{B} \\
V_{A B} & =\text { variance due to interaction }
\end{aligned}
$$

The key is to partition $V_{\text {between }}$ using the multi-factor mixing distribution

Mixing distribution must be one of two types ${ }^{3}$

flat. All probabilities equal. Corresponds to a well-designed experiment. All factor combinations are evaluated equally in their contributions to variance.
rank-one. Also called proportional. The mixing distribution can be assembled from its marginals, and the mixture weights are proportional across factors A and B.

These distributions ask different questions.

[^2]\[

$$
\begin{aligned}
& \pi_{A}=\sum_{j} \sum_{k} \Pi \quad N_{A} \times 1 \\
& \mathbf{m}_{B}=\sum_{i} \sum_{k}(\mathbf{M} \circ \boldsymbol{\Pi}) \otimes \sum_{i} \sum_{k} \boldsymbol{\Pi} \quad N_{B} \times 1 \boldsymbol{\pi}_{B}=\sum_{i} \sum_{k} \boldsymbol{\Pi} \quad N_{B} \times 1 \\
& V_{\mathrm{A}}=\mathbb{V}\left(\boldsymbol{m}_{A}, \boldsymbol{\pi}_{A}\right) \\
& \mathbf{m}_{C}=\sum_{i} \sum_{i}(\mathbf{M} \circ \boldsymbol{\Pi}) \otimes \sum_{i} \sum_{i} \boldsymbol{\Pi} \quad N_{C} \times 1 \boldsymbol{\pi}_{C}=\sum \sum \boldsymbol{\Pi} \quad N_{C} \times 1 \\
& V_{B}=\mathbb{V}\left(\boldsymbol{m}_{B}, \boldsymbol{\pi}_{B}\right) \\
& V_{C}=\mathbb{V}\left(\boldsymbol{m}_{A}, \boldsymbol{\pi}_{A}\right) \\
& \pi_{A B}=\sum_{k} \Pi \quad N_{A} \times N_{B} \\
& \mathbf{m}_{B C}=\sum_{i}(\boldsymbol{M} \circ \boldsymbol{\Pi}) \ominus \sum_{i} \boldsymbol{\Pi} \quad N_{B} \times N_{C} \quad \pi_{A C}=\sum_{j} \Pi \quad N_{A} \times N_{C} \\
& V_{B C}=\mathbb{V}\left(\operatorname{vec} \boldsymbol{m}_{B C}, \operatorname{vec} \pi_{B C}\right)-V \\
& V_{\mathrm{ABC}}=\mathbb{V}\left(\operatorname{vec} \mathrm{m}_{A B C}, \operatorname{vec} \pi_{A B C}\right)- \\
& \pi_{B C}=\sum_{i} \Pi \quad N_{B} \times N_{C} \\
& \pi_{A B C}=\Pi \quad N_{A} \times N_{B} \times N_{C} \\
& V_{A B}=\mathbb{V}\left(\operatorname{vec} \boldsymbol{m}_{A B}, \operatorname{vec} \pi_{A B}\right)-V \\
& V_{\mathrm{AC}}=\mathbb{V}\left(\operatorname{vec} \mathrm{m}_{A C}, \operatorname{vec} \pi_{A C}\right)-V
\end{aligned}
$$
\]

Alas, no time for algebra

A two-factor example
 U.S. Longevity 2020: sex \times race 4

- 5 racial/ethnic groups, 2 sexes
- means for each factor combination

	Means				
male	Hispanic	NHAIAN	NHA	NHB	NHW
female	74.6	63.8	81.1	67.8	74.8
	81.3	70.7	85.9	75.3	80.1

- variances for each combination

	Variances				
male	Hispanic	NHAIAN	NHA	NHB	NHW
female	289	408	218	372	294
	219	391	163	315	235

[^3]
U.S. Longevity: sex \times race

Mixing distributions

- flat

$$
\pi_{\mathrm{race}}=\left(\begin{array}{c}
\text { Hispanic } \\
\text { NHAIAN } \\
\text { NHA } \\
\text { NHB } \\
\text { NHW }
\end{array}\right)=\left(\begin{array}{c}
0.2 \\
0.2 \\
0.2 \\
0.2 \\
0.2
\end{array}\right) \quad \pi_{\mathrm{sex}}=\binom{0.5}{0.5} .
$$

- rank-one, based on estimated population by race

$$
\pi_{\mathrm{race}}=\left(\begin{array}{c}
\text { Hispanic } \\
\text { NHAIAN } \\
\text { NHA } \\
\text { NHB } \\
\text { NHW }
\end{array}\right)=\left(\begin{array}{c}
0.19 \\
0.01 \\
0.06 \\
0.13 \\
0.62
\end{array}\right) \quad \pi_{\mathrm{sex}}=\binom{0.5}{0.5}
$$

Mixing distributions: sex \times race

Mixing distributions ask different questions

- flat
$\pi_{\text {race }}=\left(\begin{array}{c}0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2\end{array}\right)$
- what are the contributions of sex and race, as such?
- rank-one, based on estimated population by race
$\boldsymbol{\pi}_{\text {race }}=\left(\begin{array}{c}0.19 \\ 0.01 \\ 0.06 \\ 0.13 \\ 0.62\end{array}\right)$
- contributions of sex and race
- in a population with the composition $\pi_{\text {race }}$
- "survey" interpretation ${ }^{a}$
- 81% Hispanic and NHW; don't care much about NHAIAN
${ }^{\text {aK Kendall and Stuart 1976. The Advanced Theory of Statistics, Vol. } 3}$

Variance components: U.S. sex \times race

Flat mixing	
Component	Variance
Race	31.5
Sex	9.7
Race \times sex	0.3
(between-group)	41.5
Stochasticity	290.3
Total	331.8
\mathcal{K}	0.125

Rank-one mixing	
Component	Variance
Race	7.4
Sex	8.5
Race \times sex	0.2
(between-group)	16.1
Stochasticity	269.3
Total	285.4
\mathcal{K}	0.056

A three-factor example

Sex, race, and U.S. state of residence ${ }^{5}$

- differences in life expectancy among U.S. states (73-80y) are comparable to differences due to race and sex
- life table data
- 40 U.S. states
- two races ("white" and "black")
- two sexes
- 3 main effects, 3 two-way interactions, 1 three-way interaction

[^4]
Variance components: sex \times race \times U.S. state

Flat mixing

Component	Variance
$\mathrm{A}=$ sex	9.23
$\mathrm{~B}=$ race	7.50
$\mathrm{C}=$ state	1.37
$\mathrm{AB}=$ sex \times race	0.061
$\mathrm{AC}=$ sex \times state	0.209
$\mathrm{BC}=$ race \times state	0.567
$\mathrm{ABC}=$ sex \times race \times state	0.170
(between-groups)	19.11
Stochasticity	303.04
Total	322.14
\mathcal{K}	0.059

Conclusions

1. Heterogeneous populations are mixtures
2. Variance from stochasticity and heterogeneity
3. Now possible to partition variance due to heterogeneity

- contributions of multiple factors,
- and interactions,
- longevity, lifetime fertility, healthy longevity, more

4. Longevity example: sex, race, state

- heterogeneity still makes small contribution
- interactions not important

5. Lifetime fertility may behave differently (consequences of failure)

Do you have data on multiple factors? Happy to talk about it.

Thank you

Longevity: sex and U.S. state of residence ${ }^{6}$

Flat mixing	
Component	Variance
State	3.69
Sex	7.74
State \times sex	0.088
(between-groups)	11.53
Stochasticity	275.6
Total	287.1
\mathcal{K}	0.040

Rank-one mixing	
Component	Variance
State	2.88
Sex	7.93
State \times sex	0.053
(between-groups)	10.86
Stochasticity	270.03
Total	280.9
\mathcal{K}	0.039

[^5]
Lifetime fertility: nutrition and pollution

- Rotifers: cute little tiny aquatic organisms
- Model species for aging and toxicology studies
- Factorial design ${ }^{a}$
- 2 levels of nutrition (high and low food)
- 5 levels of environmental stress (DDT exposure)
- means and variances calculated from Markov chain with rewards
${ }^{a}$ Rao and Sarma (1986), Caswell (2001)

Lifetime fertility

Flat mixing

Component	Variance
A=Food	8.12
B=DDT	10.09
AB=Food \times DDT	1.84
(between-group)	20.05
Stochasticity	15.2
Total	35.2
\mathcal{K}	0.57

[^0]: ${ }^{1}$ see Caswelll 2023, The contributions of stochastic demography and social inequality to lifespan variability. Demographic Research 49: 309-354.

[^1]: ${ }^{2}$ We might see an example with 4 simultaneous factors, see Bergeron-Boucher et al., Session 5 on Thursday.

[^2]: ${ }^{3} \mathrm{~A}$ well known issue in experimental design.

[^3]: ${ }^{4}$ United States Life Tables 2020, NVSS 71(1).

[^4]: ${ }^{5}$ U.S. Decennial Life Tables 1999-2001, NVSS 60(9)

[^5]: ${ }^{6}$ U.S. State Life Tables, NVSS 71(2). Rank-one mixing based on total state population.

