Medical progress as a driver of (unequal) life cycle outcomes

Michael Kuhn¹, Miguel Sánchez-Romero^{1,2}

¹ Wittgenstein Centre (IIASA, VID/ÖAW, WU)

 2 Institute of Statistics and Mathematical Methods in Economics, Research Unit Economics, TU Wien, Austria $\,$

Wittgenstein Centre Conference 2019, 11-12 November, 2019

Motivation I: Life expectancy

- Large and increasing difference in life expectancy by SES
- Differences are exaggerated by increasing selectivity of lower ed. groups, but differences remain after adjusting for this

Figure 1: US MALE LIFE EXPECTANCY AT AGE 25, 1989–2016

Source: Authors' calculations based on CDC data.

Motivation II: Income

 The wage gap between males with post-college education and high school dropouts rose from 1979 through 2005

Figure 2: Trends in composition-adjusted real log weekly full-time wages by education, 1963–2005 (March CPS) Source: Autor et al. (2008, REStat)

• Inequality is multi-dimensional: education, wealth, health, etc...

- Inequality is multi-dimensional: education, wealth, health, etc...
- Many of these "factors" are both drivers and outcomes of life-cycle inequality

- Inequality is multi-dimensional: education, wealth, health, etc...
- Many of these "factors" are both drivers and outcomes of life-cycle inequality
- Aim: To propose a framework for studying how (heterogeneous) individuals accumulate human capital, assets, and health deficits over the life cycle.

- Inequality is multi-dimensional: education, wealth, health, etc...
- Many of these "factors" are both drivers and outcomes of life-cycle inequality
- Aim: To propose a framework for studying how (heterogeneous) individuals accumulate human capital, assets, and health deficits over the life cycle.
 - Heterogeneity in initial endowments: learning ability, access to schooling (SES), initial health deficits

- Inequality is multi-dimensional: education, wealth, health, etc...
- Many of these "factors" are both drivers and outcomes of life-cycle inequality
- Aim: To propose a framework for studying how (heterogeneous) individuals accumulate human capital, assets, and health deficits over the life cycle.
 - Heterogeneity in initial endowments: learning ability, access to schooling (SES), initial health deficits
 - Productivity growth and medical progress as drivers of (i) development over time; (ii) inequality

Model I

Individuals maximize their life-cycle utility

$$V(\mathbf{c}, \mathbf{l}, \mathbf{S}, E, R, T) = \int_{0}^{E} e^{-\rho t} u(c(t), 0, \phi) S(t) dt$$
$$+ \int_{E}^{R} e^{-\rho t} u(c(t), I(t), 0) S(t) dt$$
$$+ \int_{R}^{T} e^{-\rho t} u(c(t), 0, \varphi) S(t) dt$$

- 1 with c: consumption, I: labor supply, S: survival (streams)
- 2 and E: duration of education, R: retirement age, T: a terminal age.

Model I

Individuals maximize their life-cycle utility

$$V(\mathbf{c}, \mathbf{l}, \mathbf{S}, E, R, T) = \int_{0}^{E} e^{-\rho t} u(c(t), 0, \phi) S(t) dt$$
$$+ \int_{E}^{R} e^{-\rho t} u(c(t), l(t), 0) S(t) dt$$
$$+ \int_{R}^{T} e^{-\rho t} u(c(t), 0, \varphi) S(t) dt$$

- 1 with c: consumption, I: labor supply, S: survival (streams)
- 2 and E: duration of education, R: retirement age, T: a terminal age.
- subject to

dynamic state	depending on	impacting
survival	mortality	remaining life exp
health deficits	$health\ care\ +\ initial\ defs$	mortality + depr hum cap
human capital	education $+$ health defs $+$ learning ability	earnings
financial wealth	cons + health care + education	ditto

Model II

- Individual heterogeneity with respect to their endowment
 - health deficits at birth (tantamount to frailty)
 - 2 learning ability
 - ${f 3}$ disutility of attending school ϕ (tantamount to parental aversity to schooling and other access barriers)

Model II

- Individual heterogeneity with respect to their endowment
 - health deficits at birth (tantamount to frailty)
 - 2 learning ability
 - ${f 3}$ disutility of attending school ϕ (tantamount to parental aversity to schooling and other access barriers)
- These determine selection into three educational categories (primary, secondary, and costly tertiary)

Model II

- Individual heterogeneity with respect to their endowment
 - health deficits at birth (tantamount to frailty)
 - 2 learning ability
 - ${f 3}$ disutility of attending school ϕ (tantamount to parental aversity to schooling and other access barriers)
- These determine selection into three educational categories (primary, secondary, and costly tertiary)
- Sequential solution of the model to obtain optimal
 - 1 laws of motion for consumption, labor and health care (over the life-cycle)
 - 2 retirement age
 - Iongevity
 - 4 choice of schooling

- In the numerical analysis we
 - consider random draws (> 25,000 for each scenario) from three distributions of parameters: ability, disutility of schooling — reflecting family background—, and initial health deficits

- In the numerical analysis we
 - 1 consider random draws (> 25,000 for each scenario) from three distributions of parameters: ability, disutility of schooling — reflecting family background—, and initial health deficits
 - 2 calibrate the benchmark to reflect US economy/demography for birth cohorts 1910–1970

- In the numerical analysis we
 - Ocnsider random draws (> 25,000 for each scenario) from three distributions of parameters: ability, disutility of schooling reflecting family background—, and initial health deficits
 - 2 calibrate the benchmark to reflect US economy/demography for birth cohorts 1910–1970
 - 3 Three targets: (i) evolution of life expectancy 1910–1970; (ii) health care spending share for the cohorts 1910–1930; (iii) Educational distribution for 1910 cohort: Primary=48%, secondary=43%, postsecondary=8% (Data from Edu20c.org)

- In the numerical analysis we
 - Ocnsider random draws (> 25,000 for each scenario) from three distributions of parameters: ability, disutility of schooling reflecting family background—, and initial health deficits
 - 2 calibrate the benchmark to reflect US economy/demography for birth cohorts 1910–1970
 - 3 Three targets: (i) evolution of life expectancy 1910–1970; (ii) health care spending share for the cohorts 1910–1930; (iii) Educational distribution for 1910 cohort: Primary=48%, secondary=43%, postsecondary=8% (Data from Edu20c.org)
 - explore the role for life-cycle outcomes across and within cohorts of two secular trends: skill-biased productivity growth and medical progress (=increasing effectiveness of health care in curbing deficits)
 - two counterfactuals: one without productivity growth, one without medical progress

- In the numerical analysis we
 - Ocnsider random draws (> 25,000 for each scenario) from three distributions of parameters: ability, disutility of schooling reflecting family background—, and initial health deficits
 - 2 calibrate the benchmark to reflect US economy/demography for birth cohorts 1910–1970
 - 3 Three targets: (i) evolution of life expectancy 1910–1970; (ii) health care spending share for the cohorts 1910–1930; (iii) Educational distribution for 1910 cohort: Primary=48%, secondary=43%, postsecondary=8% (Data from Edu20c.org)
 - explore the role for life-cycle outcomes across and within cohorts of two secular trends: skill-biased productivity growth and medical progress (=increasing effectiveness of health care in curbing deficits)
 - two counterfactuals: one without productivity growth, one without medical progress
 - \bigcirc Note: Medical progress has been calibrated such that medicine explains < 50% of the increase in life expectancy

Results: Lifecycle profiles I

Figure 3: Labor Income: US birth cohorts 1910 (red) and 1960 (blue).

Results: Lifecycle profiles II

Figure 4: Assets: US birth cohorts 1910 (red) and 1960 (blue).

Results: Health care expenditure

* Health care spending increases over time both within and across educational groups

(a) Benchmark

Figure 5: Cohort health care spending share by educational attainment. Source: Authors' simulations and Hall and Jones (2007) (red diamonds).

Results: Health care expenditure

* Productivity growth raises the health care spending share (Hall and Jones, 2007; Fonseca et al, 2013; Frankovic and Kuhn, 2018)

Figure 5: Cohort health care spending share by educational attainment. Source: Authors' simulations and Hall and Jones (2007) (red diamonds).

Results: Health care expenditure

 Medical progress as a similarly potent driver of health care spending (Fonseca et al, 2013; Frankovic and Kuhn, 2018)

Figure 5: Cohort health care spending share by educational attainment. Source: Authors' simulations and Hall and Jones (2007) (red diamonds).

Results: Life expectancy

* Average LE increases faster for individuals with postsecondary education than for individuals with primary education

(a) Benchmark

Figure 6: Life expectancy at age 14 by educational attainment. Source: Authors' simulations and Bell et al. (1992) (red diamonds).

Results: Life expectancy

* Medical progress accounts for a sizeable share of the rise in average LE

Figure 6: Life expectancy at age 14 by educational attainment. Source: Authors' simulations and Bell et al. (1992) (red diamonds).

Results: Life expectancy

* Productivity growth leads to an increase in the price of health and dampens increase in life expectancy across education groups

Figure 6: Life expectancy at age 14 by educational attainment. Source: Authors' simulations and Bell et al. (1992) (red diamonds).

• Wellbeing measure: Maximized life-cycle utility $V(\mathbf{c}^*, \mathbf{l}^*, \mathbf{S}^*, \mathbf{E}^*, \mathbf{R}^*, \mathbf{T}^*)$

		Cohorts						
Education		1910	1920	1930	1940	1950	1960	1970
Primary	mean	0,967	1,023	1,072	1,103	1,127	1,151	1,176
	std.dev	0,024	0,028	0,036	0,043	0,049	0,050	0,041
Secondary	mean	0,984	1,040	1,086	1,119	1,141	1,183	1,224
	std.dev	0,026	0,031	0,035	0,044	0,051	0,065	0,082
Tertiary	mean	1,050	1,111	1,180	1,237	1,275	1,333	1,406
	std.dev	0,027	0,040	0,056	0,070	0,099	0,134	0,180
Average	mean	1,001	1,058	1,112	1,153	1,181	1,222	1,269
	std.dev	0,026	0,033	0,042	0,052	0,066	0,083	0,101

- Wellbeing measure: Maximized life-cycle utility $V(\mathbf{c}^*, \mathbf{l}^*, \mathbf{S}^*, \mathbf{E}^*, \mathbf{R}^*, \mathbf{T}^*)$
- Strong increase in wellbeing throughout but...

		Cohorts						
Education		1910	1920	1930	1940	1950	1960	1970
		_						
Primary	mean	0,967	1,023	1,072	1,103	1,127	1,151	1,176
	std.dev	0,024	0,028	0,036	0,043	0,049	0,050	0,041
Secondary	mean	0,984	1,040	1,086	1,119	1,141	1,183	1,224
	std.dev	0,026	0,031	0,035	0,044	0,051	0,065	0,082
Tertiary	mean	1,050	1,111	1,180	1,237	1,275	1,333	1,406
	std.dev	0,027	0,040	0,056	0,070	0,099	0,134	0,180
Average	mean	1,001	1,058	1,112	1,153	1,181	1,222	1,269
	std.dev	0,026	0,033	0,042	0,052	0,066	0,083	0,101

- Wellbeing measure: Maximized life-cycle utility $V(\mathbf{c}^*, \mathbf{l}^*, \mathbf{S}^*, \mathbf{E}^*, \mathbf{R}^*, \mathbf{T}^*)$
- Strong increase in wellbeing throughout but...
- ...increasing disparity across education groups and

		Cohorts						
Education		1910	1920	1930	1940	1950	1960	1970
		_						
Primary	mean	0,967	1,023	1,072	1,103	1,127	1,151	1,176
	std.dev	0,024	0,028	0,036	0,043	0,049	0,050	0,041
Secondary	mean	0,984	1,040	1,086	1,119	1,141	1,183	1,224
	std.dev	0,026	0,031	0,035	0,044	0,051	0,065	0,082
Tertiary	mean	1,050	1,111	1,180	1,237	1,275	1,333	1,406
	std.dev	0,027	0,040	0,056	0,070	0,099	0,134	0,180
Average	mean	1,001	1,058	1,112	1,153	1,181	1,222	1,269
	std.dev	0,026	0,033	0,042	0,052	0,066	0,083	0,101

- Wellbeing measure: Maximized life-cycle utility $V(\mathbf{c}^*, \mathbf{I}^*, \mathbf{S}^*, \mathbf{E}^*, \mathbf{R}^*, \mathbf{T}^*)$
- Strong increase in wellbeing throughout but...
- ...increasing disparity across education groups and
- ...within education group, in particular the tertiary (Selection!)

		Cohorts						
Education		1910	1920	1930	1940	1950	1960	1970
		_						
Primary	mean	0,967	1,023	1,072	1,103	1,127	1,151	1,176
	std.dev	0,024	0,028	0,036	0,043	0,049	0,050	0,041
Secondary	mean	0,984	1,040	1,086	1,119	1,141	1,183	1,224
	std.dev	0,026	0,031	0,035	0,044	0,051	0,065	0,082
Tertiary	mean	1,050	1,111	1,180	1,237	1,275	1,333	1,406
	std.dev	0,027	0,040	0,056	0,070	0,099	0,134	0,180
Average	mean	1,001	1,058	1,112	1,153	1,181	1,222	1,269
	std.dev	0,026	0,033	0,042	0,052	0,066	0,083	0,101

Results: Role of medical progress and productivity growth

 Both medical progress and income growth contribute to increase in wellbeing, but...

		Cohorts						
Scenario		1910	1920	1930	1940	1950	1960	1970
Benchmark								
	mean	1,001	1,058	1,112	1,153	1,181	1,222	1,269
	std.dev	0,026	0,033	0,042	0,052	0,066	0,083	0,101
No Medical	Progress							
	mean	0,988	1,038	1,076	1,099	1,111	1,132	1,157
	std.dev	0,021	0,023	0,023	0,024	0,022	0,023	0,022
No Producti	vity Grow	rth						
	mean	0,921	0,956	0,983	0,995	1,007	1,031	1,059
	std.dev	0,025	0,031	0,038	0,043	0,054	0,070	0,083

Results: Role of medical progress and productivity growth

- Both medical progress and income growth contribute to increase in wellbeing, but...
- ...medical progress provides a much stronger boost to inequality

Scenario	191								
	131	.0 1920	1930	1940	1950	1960	1970		
Benchmark									
me	an 1,0 0	1,058	1,112	1,153	1,181	1,222	1,269		
std	dev 0,02	16 0,033	0,042	0,052	0,066	0,083	0,101		
No Medical Prog	No Medical Progress								
me	an 0,9 8	1,038	1,076	1,099	1,111	1,132	1,157		
std	dev 0,02	2 1 0,023	0,023	0,024	0,022	0,023	0,022		
No Productivity Growth									
me std.	an 0,9 2 dev 0,0 2	-,	0,983 0,038	0,995 0.043	1,007 0,054	1,031 0.070	1,059 0.083		

• We have developed a framework for analyzing the increase in within-cohort inequality in wealth, life expectancy and wellbeing

- We have developed a framework for analyzing the increase in within-cohort inequality in wealth, life expectancy and wellbeing
- Our framework accounts for compositional effects and selectivity through a set of initial endowments (learning ability, initial health deficits, and effort cost of schooling)

- We have developed a framework for analyzing the increase in within-cohort inequality in wealth, life expectancy and wellbeing
- Our framework accounts for compositional effects and selectivity through a set of initial endowments (learning ability, initial health deficits, and effort cost of schooling)
- Both medical progress and productivity growth turn out to be strong drivers of increases in life expectancy (here medical progress is stronger) and wellbeing (here productivity growth is stronger)

- We have developed a framework for analyzing the increase in within-cohort inequality in wealth, life expectancy and wellbeing
- Our framework accounts for compositional effects and selectivity through a set of initial endowments (learning ability, initial health deficits, and effort cost of schooling)
- Both medical progress and productivity growth turn out to be strong drivers of increases in life expectancy (here medical progress is stronger) and wellbeing (here productivity growth is stronger)
- Medical progress a much stronger propensity to widen disparities, presumably by triggering strong selection into education groups

Thank you!

This project has received funding from the Austrian National Bank (OeNB) under Grant no. 17647.

Results: Educational attainment

* Strong educational expansion implies strong selection effects

(a) Benchmark

Figure 9: Educational distribution: Birth cohorts 1910–1970. Source: Authors' simulations.

Results: Educational attainment

 A strong Ben-Porath effect: Absence of medical progress eliminates returns of education

Figure 9: Educational distribution: Birth cohorts 1910–1970. Source: Authors' simulations.

Results: Educational attainment

* Medical progress is key to explain the increase in education

Figure 9: Educational distribution: Birth cohorts 1910–1970. Source: Authors' simulations.

(a) Benchmark

Figure 10: Cohort lifetime labor income by educational attainment. Source: Authors' simulations.

* Case (b) The increase is due to productivity growth

Figure 10: Cohort lifetime labor income by educational attainment. Source: Authors' simulations.

* Case (c) Flat incomes in the absence of productivity growth

Figure 10: Cohort lifetime labor income by educational attainment. Source: Authors' simulations.

The individual

Survival and health deficit accumulation:

 Survival as a fourth state as in Kuhn et al. (2015), Schünemann et al. (2017) and Dragone and Strulik (2018)

$$\dot{S} = -\mu(D, z)S \text{ with } S(0, z) = 1,$$
 (1)

where z denotes the birth cohort.

The individual

■ Survival and health deficit accumulation:

 Survival as a fourth state as in Kuhn et al. (2015), Schünemann et al. (2017) and Dragone and Strulik (2018)

$$\dot{S} = -\mu(D, z)S \text{ with } S(0, z) = 1,$$
 (1)

where z denotes the birth cohort.

Health deficits accumulation: Dalgaard and Strulik (2014)

$$\dot{D} = \beta_d (D - A(E)h^{\eta} - \gamma_d) \tag{2}$$

with $A(E)/A(E) = g_h/(1 + \alpha_g t)$ (decreasing medical progress), $\eta \in (0,1)$ returns to health care investment, $D(t) \leq \overline{D}$, $D(T) = \overline{D}$.

heterogeneous initial health deficits: $D(0) \sim \gamma_d + \mathbb{U}(\alpha_d, \overline{\alpha_d})$

mortality modeling

■ Health-dependent human capital:

$$\dot{H} = \begin{cases} \theta H^{\gamma} - \delta(D)H & \text{for } t \leq E, \\ -\delta(D)H & \text{for } t > E, \end{cases}$$
 (3)

E length of schooling, θ learning ability level, $\delta(D) = \kappa D^2$ depreciation of human capital, and $\gamma \in (0,1)$ return-to-scale of education

heterogeneous learning ability: $\theta \sim \mathbb{U}(\underline{\theta}, \overline{\theta})$

Assets accumulation:

$$\dot{a} = \begin{cases} ra - c - p_h h - p_\mu \mu(D, z) - T U_z(E) & \text{for } 0 < t \le E, \\ ra - c - p_h h - p_\mu \mu(D, z) + w_z(D, E|\theta) \ell & \text{for } E < t \le R, \\ ra - c - p_h h - p_\mu \mu(D, z) & \text{for } R < t \le T. \end{cases}$$
(4)

where $TU_z(E)$ is the tuition cost of attending college and the wage rate is given by

Assets accumulation:

$$\dot{a} = \begin{cases} ra - c - p_h h - p_\mu \mu(D, z) - T U_z(E) & \text{for } 0 < t \le E, \\ ra - c - p_h h - p_\mu \mu(D, z) + w_z(D, E|\theta) \ell & \text{for } E < t \le R, \\ ra - c - p_h h - p_\mu \mu(D, z) & \text{for } R < t \le T. \end{cases}$$
(4)

where $TU_z(E)$ is the tuition cost of attending college and the wage rate is given by

$$\log w_z(t, D, E|\theta) = \log H(t, D, E|\theta) + g(E)(z+t) + \beta_0 + \beta_1(t-E) + \beta_2(t-E)^2.$$
 (5)

Parameter g(E) is the education-specific labor-augmenting technological progress

■ Instantaneous utility: For simplicity' sake we define

$$\mathbf{u}(t|\phi) \equiv \begin{cases} u(c(t),0) - \phi & \text{for } 0 < t \le E, \\ u(c(t),\ell(t)) & \text{for } E < t \le R, \\ u(c(t),0) + \varphi(t) & \text{for } R < t \le T, \end{cases}$$
(6)

 $u(c,\ell)>0$ instantaneous utility as in Murphy and Topel (2006) ϕ disutility of attending school: **heterogeneous access** $\varphi(\cdot)$ utility of leisure during retirement (with $\varphi'>0,\ \varphi''>0$)

■ Instantaneous utility: For simplicity' sake we define

$$\mathbf{u}(t|\phi) \equiv \begin{cases} u(c(t),0) - \phi & \text{for } 0 < t \le E, \\ u(c(t),\ell(t)) & \text{for } E < t \le R, \\ u(c(t),0) + \varphi(t) & \text{for } R < t \le T, \end{cases}$$
(6)

 $\begin{array}{ll} u(c,\ell)>0 & \text{instantaneous utility as in Murphy and Topel (2006)} \\ \phi & \text{disutility of attending school: } \mathbf{heterogeneous} \text{ access} \\ \varphi(\cdot) & \text{utility of leisure during retirement (with } \varphi'>0, \, \varphi''>0) \end{array}$

Lifetime utility:

$$V(0|\phi) = \int_0^T e^{-\rho t} S(t) \mathbf{u}(t|\phi) dt \text{ with } \phi \sim \mathbb{U}(\underline{\phi}, \overline{\phi}).$$
 (7)

 ρ time discount factor

• Value of schooling (VOS): Willingness to pay for H units of human capital

$$\psi^{H}(t) = \int_{t}^{R} e^{-r(s-t)} w_{z}(s, E|\theta) \ell(s) ds > 0 \text{ for } t \in (E, R).$$
 (8)

• Value of schooling (VOS): Willingness to pay for H units of human capital

$$\psi^{H}(t) = \int_{t}^{R} e^{-r(s-t)} w_{z}(s, E|\theta) \ell(s) ds > 0 \text{ for } t \in (E, R).$$
 (8)

• Value of life (VOL): Willingness to pay for saving one's life

$$\psi^{S}(t) = \int_{t}^{T} e^{-r(s-t)} \frac{\mathbf{u}(s)}{\mathbf{u}'_{c}(s)} ds > 0.$$

$$\tag{9}$$

• Value of schooling (VOS): Willingness to pay for H units of human capital

$$\psi^{H}(t) = \int_{t}^{R} e^{-r(s-t)} w_{z}(s, E|\theta) \ell(s) ds > 0 \text{ for } t \in (E, R).$$
 (8)

Value of life (VOL): Willingness to pay for saving one's life

$$\psi^{S}(t) = \int_{t}^{T} e^{-r(s-t)} \frac{\mathbf{u}(s)}{\mathbf{u}'_{c}(s)} ds > 0.$$
 (9)

 Value of health deficits (VOD): Willingness to pay for avoiding the accumulation of health deficits

$$-\psi^{D}(t) = -\psi^{D}(T)e^{-(r-\beta_{d})(T-t)} + \int_{t}^{T} e^{-(r-\beta_{d})(s-t)} \left[\mu'(D(s))(\psi^{S}(s) + p_{\mu}(s)) + \delta'(D(s))\psi^{H}(s) \right] ds < 0.$$
 (10)

• Value of schooling (VOS): Willingness to pay for H units of human capital

$$\psi^{H}(t) = \int_{t}^{R} e^{-r(s-t)} w_{z}(s, E|\theta) \ell(s) ds > 0 \text{ for } t \in (E, R).$$

$$\tag{8}$$

• Value of life (VOL): Willingness to pay for saving one's life

$$\psi^{S}(t) = \int_{t}^{T} e^{-r(s-t)} \frac{\mathbf{u}(s)}{\mathbf{u}'_{c}(s)} ds > 0.$$
 (9)

 Value of health deficits (VOD): Willingness to pay for avoiding the accumulation of health deficits

$$-\psi^{D}(t) = -\psi^{D}(T)e^{-(r-\beta_{d})(T-t)} + \int_{t}^{T} e^{-(r-\beta_{d})(s-t)} \left[\mu'(D(s))(\psi^{S}(s) + p_{\mu}(s)) + \delta'(D(s))\psi^{H}(s) \right] ds < 0.$$
 (10)

Health care investments

$$h(t) = \left(\beta_d \eta \left(-\psi^D(t)\right) \frac{A(t)}{\rho_h(t)}\right)^{\frac{1}{1-\eta}}.$$
 (11)

1. The laws of motion for consumption, labor, and health care:

$$\dot{c}/c = \sigma_c(r - \rho - \mu(D)), \tag{12}$$

$$\dot{\ell}/\ell = \sigma_I \left(\dot{w}_z / w_z + \rho - r + \mu(D) \right), \tag{13}$$

$$\dot{h}/h = (1 - \eta)^{-1} \left(r - \beta_d + \frac{\dot{A}}{A} - \frac{\dot{p}_h}{p_h} - \frac{\mu'(D) \left(\psi^S + p_\mu \right) + \delta'(D) \psi^H}{-\psi^D} \right). \tag{14}$$

1. The laws of motion for consumption, labor, and health care:

$$\dot{c}/c = \sigma_c(r - \rho - \mu(D)), \tag{12}$$

$$\dot{\ell}/\ell = \sigma_I \left(\dot{\mathbf{w}}_{\mathbf{z}} / \mathbf{w}_{\mathbf{z}} + \rho - r + \mu(\mathbf{D}) \right), \tag{13}$$

$$\dot{h}/h = (1 - \eta)^{-1} \left(r - \beta_d + \frac{\dot{A}}{A} - \frac{\dot{p}_h}{p_h} - \frac{\mu'(D) \left(\psi^S + p_\mu \right) + \delta'(D) \psi^H}{-\psi^D} \right). \tag{14}$$

2. Optimal retirement age

$$\mathbf{u}_{c}'(R^{*}|\phi)w_{z}(D,R^{*},E|\theta)\ell(R^{*}) = \varphi(R^{*}) - \alpha_{I}v(\ell(R^{*})). \tag{15}$$

1. The laws of motion for consumption, labor, and health care:

$$\dot{c}/c = \sigma_c(r - \rho - \mu(D)), \tag{12}$$

$$\dot{\ell}/\ell = \sigma_I \left(\dot{\mathbf{w}}_{\mathbf{z}} / \mathbf{w}_{\mathbf{z}} + \rho - r + \mu(D) \right), \tag{13}$$

$$\dot{h}/h = (1 - \eta)^{-1} \left(r - \beta_d + \frac{\dot{A}}{A} - \frac{\dot{p}_h}{p_h} - \frac{\mu'(D) \left(\psi^S + p_\mu \right) + \delta'(D) \psi^H}{-\psi^D} \right). \tag{14}$$

2. Optimal retirement age

$$\mathbf{u}_c'(R^*|\phi)\mathbf{w}_z(D,R^*,E|\theta)\ell(R^*) = \varphi(R^*) - \alpha_I \mathbf{v}(\ell(R^*)).$$

3. Optimal longevity and the value of health deficits

$$\mathcal{H}(T^*) = 0, D(t) \le \overline{D}, \text{ and } D(T^*) = \overline{D}.$$
 (16)

(15)

1. The laws of motion for consumption, labor, and health care:

$$\dot{c}/c = \sigma_c(r - \rho - \mu(D)),$$

$$\dot{\ell}/\ell = \sigma_I \left(\dot{w}_z / w_z + \rho - r + \mu(D) \right),$$

$$\dot{h}/h = (1-\eta)^{-1} \left(r - \beta_d + \frac{\dot{A}}{A} - \frac{\dot{p}_h}{p_h} - \frac{\mu'(D)\left(\psi^S + p_\mu\right) + \delta'(D)\psi^H}{-\psi^D}\right).$$

2. Optimal retirement age

$$\mathbf{u}_{\mathsf{c}}'(R^*|\phi)w_{\mathsf{z}}(D,R^*,E|\theta)\ell(R^*) = \varphi(R^*) - \alpha_{\mathsf{I}} \mathsf{v}(\ell(R^*)).$$

3. Optimal longevity and the value of health deficits

$$E^* = \operatorname*{max}_{E \in \mathbb{E}} V(E, T^*, R^*, c^*, \ell^*, h^*).$$

 $\mathcal{H}(T^*)=0, D(t)<\overline{D}, \text{ and } D(T^*)=\overline{D}.$

(12)

(13)

(14)

(15)

(16)

(17)

• From Mitnitski et al. (2002) we have

$$\mu(D,z) = \gamma_{\mu}(z) + \alpha_{\mu} \left(\frac{D - \gamma_{d}}{\alpha_{d}}\right)^{\frac{\beta_{\mu}}{\beta_{d}}}$$
(18)

⇒ Using the health deficit model gives

$$\mu(D(t),z) = \gamma_{\mu}(z) + \alpha_{\mu} e^{\beta_{\mu}t + \frac{\beta_{\mu}}{\beta_{d}} \log(1 - \operatorname{Re}(t,z))}, \tag{19}$$

where $\operatorname{Re}(t,z)$ is the "rejuvenation rate" at age t for the cohort z

$$0 \le \operatorname{Re}(t,z) = \frac{\beta_d}{\alpha_d} \int_0^t A(s+z)h(s)^{\eta} e^{-\beta_d s} ds < 1.$$
 (20)

health deficits

Let's assume a permanent medical breakthrough ξ at time τ is given by

$$A(t) = \begin{cases} A & \text{for } t < \tau, \\ A + \xi & \text{for } t \ge \tau. \end{cases}$$
 (21)

Then, the relative marginal impact on the mortality hazard rate of a permanent medical breakthrough ξ at time τ is

$$-\frac{\xi}{\mu(t)} \frac{\partial \mu(t)}{\partial \xi} = \begin{cases} 0 & \text{for } t < \tau, \\ \xi \frac{\beta_{\mu}}{\alpha_{d}} \frac{\int_{\tau}^{t} h(s)^{\eta} e^{-\beta_{d} s} ds}{1 - \text{Re}(t)} \left(1 - \frac{\gamma_{\mu}(t)}{\mu(t)}\right) & \text{for } t \ge \tau. \end{cases}$$
(22)

The individual (cont'd) Figures/MedBreakthrough.jpeg

14 / 16

The individual (cont'd) Figures/LongElasticity.jpeg

14 / 16

Current-value Hamiltonian:

$$\mathcal{H} = \begin{cases} S(u(c) - \phi) + \lambda_{a}(ra - c - p_{h}h - p_{\mu}\mu(D)) \\ + \lambda_{h}(\theta H^{\gamma} - \kappa D^{2}H) + \lambda_{D}\beta_{d}(D - Ah^{\eta} - \gamma_{d}) & \text{schooling period,} \\ -\lambda_{S}\mu(D)S \end{cases}$$

$$\mathcal{H} = \begin{cases} Su(c,\ell) + \lambda_{a}(ra + Hw\ell - c - p_{h}h - p_{\mu}\mu(D)) \\ -\lambda_{h}\kappa D^{2}H + \lambda_{D}\beta_{d}(D - Ah^{\eta} - \gamma_{d}) & \text{working period,} \\ -\lambda_{S}\mu(D)S \end{cases}$$

$$S(u(c) + \varphi) + \lambda_{a}(ra - c - p_{h}h - p_{\mu}\mu(D)) \\ + \lambda_{D}\beta_{d}(D - Ah^{\eta} - \gamma_{d}) - \lambda_{S}\mu(D)S \end{cases}$$
 retirement period.

Calibration

■ Three targets:

1 Health care expenditure for 1910 birth cohort is 10% of total lifetime income, whereas for 1930 birth cohort is above 15% of total lifetime income: $\Rightarrow \bar{A}(0)$ (initial medical technology)

Calibration

Three targets:

- 1 Health care expenditure for 1910 birth cohort is 10% of total lifetime income, whereas for 1930 birth cohort is above 15% of total lifetime income: $\Rightarrow \bar{A}(0)$ (initial medical technology)
- 2 Evolution of life expectancy: $\Rightarrow A(t, E) = A(0, E) \exp\{\int_0^t \frac{g_h}{1 + \alpha_g s} ds\}$, where g_h (medical progress)

Calibration

Three targets:

- 1 Health care expenditure for 1910 birth cohort is 10% of total lifetime income, whereas for 1930 birth cohort is above 15% of total lifetime income: $\Rightarrow \bar{A}(0)$ (initial medical technology)
- 2 Evolution of life expectancy: $\Rightarrow A(t, E) = A(0, E) \exp\{\int_0^t \frac{g_h}{1 + \alpha_g s} ds\}$, where g_h (medical progress)
- 3 Educational distribution for 1910 birth cohort: Data taken from Edu20c.org: {Primary=48%, secondary=43%, postsecondary=8%}.

Calibration (cont'd)

- Initial endowments (ϕ, θ, D_0) are randomly drawn from uniform distributions

Calibration (cont'd)

- Initial endowments (ϕ, θ, D_0) are randomly drawn from uniform distributions
- The combination of initial endowments (ϕ, θ, D_0) influence the schooling decision \rightarrow Selectivity (Less-educated individuals are more likely to come from worse socioeconomic backgrounds)

Figures/MBO.jpeg

Parameters

Table 1: Model parameters

Preferences			Prices		
IES on consumption	σ_c	0.6000	Productivity growth	g	0.0150
IES on labor	σ_I	0.2000	Rate of growth of health prices	gh	0.0225
Utility weight of labor	α_I	15.0000	Interest rate	r	0.0400
Discount factor	ρ	0.0000	Initial price of health services	p_h	\$674
Initial utility of retirement	φ_0	0.5000	Initial price of emergency care	p_m	\$9 103
	φ_1	1.8559	Initial tuition cost	T_0	\$11951
Mortality and health deficits			Human capital		
Natural rate of aging	β_d	0.0430	Returns to experience	β_1	0.0904
	α_d	0.0031	Returns to experience-squared	β_2	-0.0013
	γ_d	0.0200	Depreciation of human capital	κ	0.1500
Senescence rate	β_m	0.0737	Returns-to-scale to education	γ_h	0.6500
Minimum mortality rate	$\log(\alpha_m)$	-8.2630			
Makeham component	$\gamma_m(z)$	-	Health investments		
Maximum health deficits	\overline{D}	0.2200	Health technology	Α	0.000547
			Returns-to-scale of health	η	0.2000

Results: Life expectancy

Figure 14: Health spending to lifetime income by cohort. Source: Authors' simulations

Results: Life expectancy

Figure 15: Cohort-life expectancy at age 14. Source: Authors' simulations and Bell et al. (1992) (red diamonds).

Results: Retirement age

Figure 16: Retirement age by cohort, 1910–1970. Source: Authors' simulations.

Figure 17: Cohort-lifetime labor income. Source: Authors' simulations.

Results: Value of life (VOL)

Figure 18: Value of life (VOL) by cohort.

Source: Authors' simulations and Costa and Kahn (2004) (red diamonds).

Sensitivity analysis: Health care

Figure 19: Cohort health care spending share by educational attainment: Birth cohorts 1910–1970. Source: Authors' simulations.

Sensitivity analysis: Life expectancy

Figure 20: Life expectancy by educational attainment: Birth cohorts 1910–1970. Source: Authors' simulations

Sensitivity analysis: Educational attainment

Figure 21: Educational distribution: Birth cohorts 1910–1970. Source: Authors' simulations.

Sensitivity analysis: Retirement age

Figure 22: Retirement age by educational attainment: Birth cohorts 1910–1970. Source: Authors' simulations.

Sensitivity analysis: Lifetime income

Figure 23: Lifetime income by educational attainment: Birth cohorts 1910–1970. Source: Authors' simulations.

Sensitivity analysis: Value of life (VOL)

Figure 24: Cohort value of life by educational attainment: Birth cohorts 1910–1970. Source: Authors' simulations.

Dimensions of inequality: Income

■ The wage gap between males with post-college education and high school dropouts rose from 1979 through 2005

Figure 25: Trends in composition-adjusted real log weekly full-time wages by education, 1963–2005 (March CPS) Source: Autor et al. (2008, REStat)

Calibration (cont'd)

Figure 26: Impact of the initial endowments on educational attainment.