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“Science of Sciences”

Questions:

� How can a young scientist assess her/his chances for a scientific
career?

� How should an evaluation committee take into consideration
disparities in scientific production of candidates for a position?

� How to deal with a slump in scientific production (“midlife crisis”)

Incredible flood of scientific production (research papers, book etc.)

Essential inequalities and disparities in scientific production
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Quetelet(1835!)

Lotka (1926): concentration: frequency of authors with n publications
proportional to n−2
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(a) (b)

Figure 1: Distribution of scientific publications over time (a) Age versus creative

production rate for Russians only, in science and mathematics (b) Solid line: age

versus creative production rate for Englishmen only, in science and mathematics.

Broken line, same as in panel (a)
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Steep increase and gradual decline of output over age

Way et al (2017), Feichtinger (2019)

Descriptive and normative models

Tipping Behavior

Life cycle models of human capital accumulation Becker (1962),

Ben-Porath (1967), McDowell (1982), Levine & Stepan (1991), Stepan
(1996)
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Individual productivity patterns

Figure 2: Distribution of individuals’ productivity trajectory parameters.
Plots show example publication trajectories to illustrate general
characteristics of each quadrant. (Source: Way et al., 2017).
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� Q1: busy scientists

� Q2: slump pattern (Schwandt, 2016)

� Q3: fading behavior

� Q4: one-peaked career (Feichtinger et al., 2018)
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Rinaldi et al. (2000)

Simonton: (2014): Scientific and artistic work, Wiley Handbook of
Genius

“Once a nobel laureate, always a nobel laureate”

Merton (1968): MATTHEW EFFECT
The winner lakes all, the loser (almost) nothing.
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� Symonds al (2006): Gender differences “Academicians live longer”

� Feichtinger et al. (2006): Life expectancy of a 50 year old
academician is 3 years higher than those of an Austrian with
university education and 6 years longer than those of a “normal”
Austrian male.

� Gould (2012): Human capital and socio-economic status of
families.

� Disparitives between various desciplines (humanities vs natural
sciences)

� Clauset et al. (2015): “faculty hiring network” of American ivy
league universities
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Grimm’s Märchen (fairy tales)

Die Bremer Stadtmusikanten (The musicians of the city of

Bremen)

Age problems of scientific production:
“Als alter Esel ist man auf den Hund gekommen, nach dem kein Hahn
mehr kräht, und wo alles für die Katz’ ist.”

Retirement because shrinking power versus experiences.
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Model description

Decision variables:

K(t) ... reputation of the scientist
I(t) ... investments into improving reputation (e.g. by

research, networking, etc.)

Parameters:

r ... discount rate
c ... investment costs (individual characteristics/talent of

scientist)
δ ... depreciation rate of reputation
a ... self-enforcement rate of reputation
d ... discrimination parameter
τ ... small parameter (for numerical calculations)

Matthew function:

M(K) :=
aK − d
K − τ
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The model

V (K0, I(·), T ) :=

∫ T

0
e−rt

(
ln(K(t) + 1)− cI(t)2

)
dt (1a)

max
I(·),T

V (K0, I(·), T ) (1b)

s.t. K̇(t) =

I(t)− δK(t) +
aK(t)− d
K(t) + τ

K(t) > 0

0 K(t) = 0
(1c)

0 ≤ I(t) ≤ Imax (1d)

K(0) = K0 ≥ 0. (1e)

13 / 30



Introduction Model description Necessary optimality conditions Optimal solution patterns Conclusions

River Paradigm: an oar moves against a current in a river A; rowing
up current

K̃ ... stalling equilibrium
(maximum investment Imax required to stay in K̃)

I < Imax . . . K(t) decreasing
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Parameter

r δ c τ d a Imax

0.03 0.1 ∗ 10−5 1 ∗ 1

Table 1: Base case parameter values.
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Necessary optimality conditions

λ(t) ... current-value costate variable

λ0 ... factor for the objective value in the Hamiltonian

µ(t), ν(t) ... Lagrange multiplier

Hamiltonian

H(K, I, λ) = λ0
(
ln(K + 1)− cI2

)
+ λ

(
I − δK +

aK − d
K + τ

)
,

Lagrangian

L(K, I, λ, µ, ν) = H(K, I, λ) + µI + ν(Imax − I).
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The derivative of the Hamiltonian and Lagrangian with respect to the
control I yields

∂IH = −λ02Ic+ λ

∂IL = ∂IH+ µ− ν.

Thus, from the maximum principle

I∗(t) = argmax
0≤I≤Imax

H(K∗(t), I, λ(t)) (2)

the following expressions for the control and Lagrangian multipliers
can be derived

I∗ =


0
λ

2cλ0
Imax

, µ =


−λ
0

0

, ν =


0

0

−λ02Ic+ λ

. (3)
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The canonical system writes as:

K̇(t) = I∗(t)− δK(t) +
aK(t)− d
K(t) + τ

(4a)

λ̇(t) = rλ(t)− ∂KH(t). (4b)

with

∂KH =
λ0

K + 1
+ λ

(
aτ + d

(K + τ)2
− δ
)
.

An optimal solution (K∗(·), I∗(·), T ∗) has to satisfy the following
(limiting) transversality conditions

K∗(T ∗) = 0 and H(K∗(T ∗), I∗(T ∗), λ(T ∗)) = 0, for T ∗ <∞
(5a)

or

lim
t→∞

e−rt λ(t) = 0, for T ∗ =∞. (5b)
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Minimal admissible control value I such that zeros of the state
dynamics (1c) exist for I ∈ [I, Imax]:

I :=


0 2

√
dδ − a ≤ 0

2
√
dδ − a 0 ≤ 2

√
dδ − a ≤ Imax

∞ otherwise.

(6)
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Proposition 1

For τ = 0 the following cases can be distinguished

I < Imax: for every I ∈ [I, Imax] there exist two branches of
equilibria Ki(I), i = 1, 2 with

K1,2(I) =
I + a∓

√
(I + a)2 − 4dδ

2δ
(7a)

and

K̃i := Ki(Imax), i = 1, 2. (7b)

For I ∈ (I, Imax) and I <∞ the equilibria in (7a) satisfy

K̃1 < K1(I) < K2(I) < K̃2. (7c)

I > Imax: there exists no equilibrium of (4a) for 0 ≤ I ≤ Imax.

I = Imax: the only equilibrium is K̃1 = K̃2.
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Stalling equilibria

There exist two solutions K̃1 and K̃2 of (4a) for I = Imax

K̃1,2 =
Imax + a− δτ ∓

√
(δτ − Imax − a)2 − 4(d− Imaxτ)δ

2δ
(8)

and the solutions are real valued iff

D := (δτ − Imax − a)2 − 4(d− Imaxτ)δ ≥ 0.
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Optimal solution patterns

Proposition 2

The optimal control problem (1) exhibits an optimal solution. For
T ∗ =∞ and λ0 = 1 the Arrow sufficiency conditions are satisfied.
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Abnormal case

Normal case: λ0 6= 0
Abnormal case: λ0 = 0

Halkin (1974), Aseev and Veliov (2015)

Proposition 3

Let the problem (1) be abnormal for K(0) = K̃1 and let I ≤ Imax. Then
if Imax 6= Icrit the equilibrium (K̃1, 0) with Ĩ = Imax is an admissible
equilibrium of the canonical system (4).
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Figure 3: Bifurcation diagram for parameter values a and c is at the center.
The examples are calculated for the parameter values taken from 1 with
a = 0.1 and increasing c.
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(g) c = 4.55 (III)
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(c) c ≈ 0.684, γ1
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(f) c ≈ 4.515, γ2

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(e) c = 4.25 (II)
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(d) c = 2 (II)
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REGION I: a locally stable and an unstable equilibrium exist (K̃2 and K̃1)

low investment costs: large domain of K(0) exists for convergence to K̃2

BIFURCATION CURVE γ1: stalling equilibrium becomes Skiba equilibrium;

For K(0) = K̃1 decision maker indifferent either to stay in K̃1 with I = Imax

or choose I∗(0) < Imax moving to 0
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REGION II: Skiba equilibrium instead of stalling equilibrium;
c increasing ... I∗(0) < Imax;
domain leaving academia becomes larger;
optimally discontinous investments

BIFURCATION CURVE γ2: Skiba point coincides with stable
equilibrium and becomes semi-stable

REGION III: Always optimal to move against 0 in finite time for large
values of c and low values of a.
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Conclusions

� Merton (1968): better-known scientists tend to receive more
academic recognition than lesser-known scientists for similar work.

� Matthew effect also in other socio-economic fields as education,
health status, income and pension dynamics.

� History-dependence of the solution
→ Matthew effect can be crucial for success of scientist
→ Supportive environment important
→ Making mistakes in early career stages more

devastating than in later stages

� Threshold in state space: stalled equilibrium, investment at its
upper boundary without any growth: Putting maximum efforts
into work is not always rewarded, but necessary to stay in
academia
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Conclusions

� Paradigm of oarsman in a rowing boat
Other examples: collapse of empires; capital accumulation under
increasing returns and a self-financing constraint (Skiba on the
boundary)

� Multi-stage framework

� Abnormal optimal problems

� Economist (2019) / Wang et al. (2019): “What doesn’t kill me
makes me stronger”

� Stroebe (2010): The graying of academia: Will it reduce scientific
productivity.
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