THE INCREASING LONGEVITY GAP AND THE PENSION SYSTEM

Peter Haan Daniel Kemptner Holger Lüthen

21.11.2017
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Life expectancy is increasing with economic status: wage, different measures of annual and lifetime income, or accumulated wealth
 - Kitagawa and Hauser (1973), Lleras-Muney (2005), Chetty et al. (2016)

Earnings-related heterogeneity in life expectancy can make a pension system less progressive or even regressive

Importance likely increases: Increasing lifetime earnings inequality
 - Kopczuk, Saez, and Song (2010) for the US, Boenke, Corneo, and Lüthen (2015) for Germany
Contribution

- Evolution of heterogenous mortality by lifetime earnings across cohorts 1926-1949, West German men
- Exploit universe of retirees and use pension entitlements as proxy for lifetime earnings
- Women (household context): life expectancy of widows
- Distributional implications of increasing longevity gap through the pension system
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Pension insurance in Germany

- Mandatory for employees; Bismarckian system: pensions strongly linked to prior contributions

- Pension level based on pension type (disability, long-term workers), retirement age (early retirees get deductions) and accumulated earnings points (EP)

- 1 EP is awarded for average contributions in a year; translates in pension of about 30 € in 2016

- Accumulated EP represent ranks of lifetime earnings for employees (here: at least 30 EP; 25 EP give similar results)
Redistribution through the pension system

Two counteracting effects, similar to most pension systems:

- **Progressive component:** insurance against disability ⇒ disability pension or early retirement

- **Regressive component:** insurance against longevity ⇒ heterogeneous mortality: high earners have prolonged benefit period
Two different datasets

Dataset 1: mortality (SK90, waves 1992-2015):

- stock of pensions of West German men:
 \(\sim 66.5 \) million obs with \(\sim 3.4 \) million cases of death

- stock of survivor pensions of West German widows:
 \(\sim 29.5 \) million obs with \(\sim 2 \) million cases of death

- biography data from the pension insurance (\(\sim 13,500 \) West German men), monthly contributions from ages 14 to 66 and pension prospects
Descriptives: Observed survival rates

(a) By decile

(b) By cohort group
Table of Contents

- Introduction
- Data and institutional background
- **Methodology**
 - Life expectancy at age 65
- Distributional implications
- Conclusion
Estimation

- Logit:

\[
\log \frac{\Pr(\text{death}_{itcd} | \text{survival until age } t)}{1 - \Pr(\text{death}_{itcd} | \text{survival until age } t)} = \\
\beta_0 + \sum_{p=1}^{4} \beta_p t^p + \sum_{p=1}^{4} \beta_{pd} t^p + \mu_d + \eta_c + \nu_{cd}
\]

- Cohorts grouped into 3-year cohorts; lifetime earnings into deciles at age 65; age: 4th order polynomial

- Mortality rates predicted for a grid of age × cohort group × decile

- Age range: 65-99
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Life expectancy of West German men at 65
Life expectancy of widows if husband dies at 65

Cohort group

1st 2nd 3rd 4th 5th

26-31 32-37 38-43 44-49
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Distributional implications

- Calculate pension wealth, pension contributions and generosity
- Generosity: average individual internal rates of return (IRR) on contributions given expected benefits
- Compare generosity under homogeneous and heterogeneous mortality by deciles and cohorts
Pension wealth

<table>
<thead>
<tr>
<th>Cohort 35-37</th>
<th>Cohort 38-40</th>
<th>Cohort 41-43</th>
<th>Cohort 44-46</th>
<th>Cohort 47-49</th>
</tr>
</thead>
</table>
Difference: PW with and without differential mort.
Ginis of pension wealth with and without differential mortality

<table>
<thead>
<tr>
<th>Cohort</th>
<th>35-37</th>
<th>38-40</th>
<th>41-43</th>
<th>44-46</th>
<th>47-49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogenous mortality</td>
<td>0.162</td>
<td>0.166</td>
<td>0.180</td>
<td>0.188</td>
<td>0.193</td>
</tr>
<tr>
<td>Homogenous mortality</td>
<td>0.117</td>
<td>0.116</td>
<td>0.122</td>
<td>0.126</td>
<td>0.131</td>
</tr>
<tr>
<td>Difference</td>
<td>0.045</td>
<td>0.05</td>
<td>0.058</td>
<td>0.062</td>
<td>0.062</td>
</tr>
</tbody>
</table>
IRR; homogeneous mortality

<table>
<thead>
<tr>
<th>Cohort 35-37</th>
<th>Cohort 38-40</th>
<th>Cohort 41-43</th>
<th>Cohort 44-46</th>
<th>Cohort 47-49</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
IRR; heterogeneous mortality

<table>
<thead>
<tr>
<th>Cohort 35-37</th>
<th>Cohort 38-40</th>
<th>Cohort 41-43</th>
<th>Cohort 44-46</th>
<th>Cohort 47-49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extensions

1. **Survivor benefits**
 - Additional returns \Rightarrow insures living standard of survivors
 - We know likelihood and level from the data

2. **Mortality before 65**
 - Extrapolation of mortality at age 65 to ages prior to 65
 - Rates calibrated to meet average of official mortality statistics by cohort and sex
Pension wealth including survivor pensions

![Graph showing pension wealth for different cohorts](image)

- **Cohort 35-37**
- **Cohort 38-40**
- **Cohort 41-43**
- **Cohort 44-46**
- **Cohort 47-49**

All values are in Euro, 2015 real values.
IRR including survivor pensions

<table>
<thead>
<tr>
<th>Cohort</th>
<th>IRR</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-37</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>38-40</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>41-43</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>44-46</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>47-49</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
PW accounting for mortality before age 65

<table>
<thead>
<tr>
<th>Cohort 35-37</th>
<th>Cohort 38-40</th>
<th>Cohort 41-43</th>
<th>Cohort 44-46</th>
<th>Cohort 47-49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro, 2015 real values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the relationship between PW accounting for mortality and age before age 65 across different cohorts.
IRR accounting for mortality before age 65
Table of Contents

Introduction

Data and institutional background

Methodology

Life expectancy at age 65

Distributional implications

Conclusion
Conclusion

- Longevity gap by lifetime earnings is growing
- Drivers: large increases in life expectancy for high earners versus small increases for low earners
- Heterogeneous mortality turns otherwise progressive system regressive \Rightarrow regressive longevity dominates progressive disability
- Survivor pensions mitigate regressive effect but do not suppress it
- Mortality before age 65 likely to amplify regressive effect