Contribution of increasing education, delayed union formation and adverse economic conditions to variation in Belgian period fertility, 1960-2000

Karel Neels
• Reasons for postponement and decline of period fertility (Mills, Rindfuss, McDonald & te Velde 2011; Blossfeld, Mills & Klijzing 2005; McDonald 2006; Lesthaeghe & Neels 2002):
 - introduction and diffusion of contraceptive technology
 - rising enrollment and educational attainment
 - increasing labour force participation (including incompatibility between caring for children and labour force participation, expected increase in earnings and wage penalties, loss of training opportunities and depreciation of job-specific human capital)
 - shift to an ‘individualistic family model’; the changing role and position of children (child becoming locus of emotional and financial investment)
 - rising gender equity in education and labour market under institutional constraints (e.g. lack of childcare and supporting policies; low benefit levels and/or rigid labour markets)
 - variation in economic context and housing markets
 - changing partnership patterns (incl. higher separation/divorce, lack of suitable partners as a result of hypogamy/hypergamy and increasing education)
 - declining real wages

• Little quantitative evidence on the contribution of these potential causes to macro-level trends in fertility tempo (Ni Bhrolchain & Beaujouan 2012)
• **Reverse causation**: early childbearing impeding education (Cohen, Kravdal & Keilman 2011)

• **Negative selection on (un)observable factors** jointly affecting education and timing of first birth (family background, career preferences, genetic factors,…)
 (Braakmann 2011, Tropf 2015, Rijken & Liefbroer 2009, Grönqvist & Hall 2013)

 - Incarceration effect
 - Incompatibility student-parent roles
 - Increase in permanent income versus substitution effect and quality-quantity trade-off
 - Increasing bargaining power for women in households
 - Multiplier effect on household income through positive assortative mating
 - Knowledge of contraception and reproductive health
 - Reduction in reproductive life span after education
Education & Fertility: Mechanisms, Causal Pathways, Aggravating Circumstances

 - **consistent findings regarding fertility tempo**: postponement of first births away from teenage motherhood; increasing fertility rates between ages 20-30 and 35-40, suggesting that education shifts sequence of transitions in early adulthood into older ages
 - **inconsistent findings regarding fertility quantum**: effect ranges from negative over neutral to positive between countries periods considered, suggesting contextual factors are important

• **Recession induced postponement and recuperation** (Sobotka, Skirbekk & Philipov 2011, Neels, Theunynck & Wood 2013; Vikat 2004; Verick 2009; Aassve, Cottini & Vitali 2013)

 - prolonged enrolment in education
 - **increasing unemployment, deteriorating job conditions and overeducation** (entailing relative income deprivation and delayed entry into established labour market positions and intended career trajectories, particularly among higher educated)
 - reduced public expenditure (unemployment and parental leave benefits, childcare,...)
 - procyclical effect largely limited to younger age-groups and higher educated

- education associated with rising individualism/postmaterialist values
- postmaterialism not directly associated with lower fertility intentions
- indirect effect through changes in living arrangements/ frequent spells of single living: may affect family formation indirectly
- variation in economic conditions may induce changes in living arrangements

Research Question
Contribution of educational expansion, economic conditions and changes in living arrangements to macro-level change in synthetic parity progression ratio to first births and mean age at first birth?
Data & Methods

- 2001 Belgian Census (N=3.500.000 women) (Deboosere & Willaert, 2004)

- Individual-level effects:
 - age baseline (centered age 15, cubic effect)
 - enrolment (time-varying) (Blossfeld et al. 2001, Black et al.)
 - educational level (Becker 1960)
 - duration since graduation (quadratic effect) (Skirbekk et al. 2004, Ni Bhrolchain et al. 2012)
 - education*baseline interaction
 - partnership status (ever in co-residential union, time varying)
 - duration since first union (quadratic effect)

- Macro-level effects:
 - exogenous variation in annual unemployment rate (OECD, Sobotka et al. 2011, Singer & Willet 2003)
 - lags of 1 year (recession induced postponement) and 10 years (compensation)
 - cross-level interaction age*unemployment lag 1
 - cross-level interaction education*unemployment lag 10
Methodology

- Discrete-time hazard model (logit) of first birth hazards:

\[
\ln \left(\frac{\hat{h}_i^t}{1 - \hat{h}_i^t} \right) = a + \sum bX \\
\hat{h}_i^t = \frac{e^{a+\sum bX}}{1 + e^{a+\sum bX}}
\]

- Simulated SPPR1 and MAC1-series based on fitted hazards by age/year:

\[
SPPR_1^t = 1 - \prod_{i=0}^{35} (1 - \hat{h}_i^t) \\
MAC_1^t = 14.5 + \sum_{i=0}^{35} \frac{(\hat{S}_{i+1}^t - \hat{S}_i^t)}{SPPR_1^t} \frac{i + (i + 1)}{2}
\]

- Assessing fit between observed and simulated time-series:

- \(r \) zero-order correlation
- \(r_{\text{dif}} \) correlation between first-order differenced time-series
- \(|e| \) mean absolute deviation

Universiteit Antwerpen
SPPR1 and MAC1: Observed and Simulated Time-series

Model 1: Centred age (cubic specification)
Education (time-varying enrolment, level & duration since leaving quadratic)

Observed & Simulated SPPR1

- $R = 0.8694$
- $R^2 = 0.7559$
- $R_{dif} = 0.1039$
- $|e| = 0.0211$ (0.0380 under Constant Schedule)

Observed & Simulated MAC1

- $R = 0.9567$
- $R^2 = 0.9152$
- $R_{dif} = 0.3094$
- $|e| = 0.5013$ (1.1247 under Constant Schedule)
SPPR1 and MAC1:
Observed and Simulated Time-series

Model 3:
Centred age (cubic specification)
Partnership (ever co-residential union, duration since first partnership quadratic)

\[R = 0.7777 \]
\[R^2 = 0.6048 \]
\[\text{Rdif} = 0.1483 \]
\[|e| = 0.0229 \]

\[R = 0.9251 \]
\[R^2 = 0.8559 \]
\[\text{Rdif} = 0.4172 \]
\[|e| = 0.8537 \]
SPPR1 and MAC1: Observed and Simulated Time-series

Model 5: Centred age (cubic specification)
Unemployment Rate (lagged 1 year)

Observed & Simulated SPPR1

Observed & Simulated MAC1

\[R = 0.9561 \]
\[R^2 = 0.9251 \]
\[R_{\text{dif}} = 0.3843 \]
\[|e| = 0.0266 \]

\[R = 0.8644 \]
\[R^2 = 0.7471 \]
\[R_{\text{dif}} = 0.3689 \]
\[|e| = 0.7457 \]
Model 6: Centred age (cubic specification)
Unemployment Rate (lagged 1 year, Age*Unemployment Rate)

R = 0.9618
R² = 0.9142
Rdif = 0.3961
|e| = 0.0095

R = 0.8638
R² = 0.7462
Rdif = 0.3698
|e| = 0.5090
Model 10: Centred age (cubic specification)
Education (time-varying enrolment, level & duration since leaving)
Partnership (ever partnered, duration since first partnership)
Unemployment Rate (lagged 1 year, Age*Unemployment Rate)

Observed & Simulated SPPR1

\[R = 0.9329 \]
\[R^2 = 0.8703 \]
\[R_{dif} = 0.4009 \]
\[|e| = 0.0125 \]

Observed & Simulated MAC1

\[R = 0.9515 \]
\[R^2 = 0.9053 \]
\[R_{dif} = 0.4260 \]
\[|e| = 0.3422 \]
SPPR1 and MAC1: Observed and Simulated Time-series

Model 11:
- Centred age (cubic specification)
- Education (time-varying enrolment, level & duration since leaving)
- Partnership (ever partnered, duration since first partnership)
- Unemployment Rate (lagged 1 & 10 years + Age*Unemployment Rate)

R = 0.9586
R² = 0.9189
Rdif = 0.4715
|e| = 0.0095

Observed & Simulated SPPR1

R = 0.9712
R² = 0.9432
Rdif = 0.4449
|e| = 0.2832

Observed & Simulated MAC1
Decline of SPPR1 and fertility postponement: Educational Expansion under Adverse Economic Conditions

Educational expansion:
• requires joint consideration of:
 - time-varying enrolment (Blossfeld & Huinink 1991; Black et al. 2008)
 - attainment (Becker 1960)
 - duration since leaving (quadratic) or ‘social age’ (Skirbekk et al. 2004, Ní Bhrolchain & Beaujouan 2012)
• educational expansion correctly captures long-term trend in SPPR1 & MAC1: relevant dimension for long-term projection
• cannot account for temporal acceleration/deceleration in SPPR1/MAC1 trends:
 - high fertility in 1960s
 - low fertility in 1975-1990 and mid 1990s

Economic Context
• procyclical among women < 30 years affecting period fertility (Neels et al. 2013, Aassve et al. 2013)
• compensation among women >30 years reducing effect on cohort fertility (Sobotka et al. 2011)
• economic conditions accounts for period acceleration/deceleration in SPPR1/MAC1:
 - mean absolute deviation/year in SPPR1: < 1 percentage point
 - mean absolute deviation/year in MAC1: < 0,30 years

Delayed Union Formation: limited impact on SPPR1 and particularly MAC1-trends
Thank you for your attention!

Acknowledgement: this research was supported by grants from the Flemish Research Council (G012011N) and the Research Council of the University of Antwerp (BOF-NOI2010).
Appendix A Model Fit Statistics SPPR1

<table>
<thead>
<tr>
<th>Model specification:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
</table>

Individual-level covariates
- Centered age (cubic specification)
- In education (time-varying)
- Educational level
- Duration since graduation (quadratic)
- Education level*baseline hazard function
- Partnership status (time-varying)
- Duration since 1st partnership (quadratic)

Macro-level covariates
- Unemployment (lagged 1 year)
- Unemployment (lagged 1 year)*Age-group
 - urlag1*age1519
 - urlag1*age2024
 - urlag1*age2529
 - urlag1*age3034
 - urlag1*age3539
 - urlag1*age4044
 - urlag1*age4549
- Unemployment (lagged 1 year)*Age-group*Education
- Unemployment (lagged 10 years)*Age-group
 - urlag10*age3034
 - urlag10*age3539
 - urlag10*age4044
 - urlag10*age4549

Correlation between fitted and observed SPPR1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, not differenced</td>
<td>0.8694</td>
<td>0.8674</td>
<td>0.7777</td>
<td>0.8003</td>
<td>0.9561</td>
<td>0.9618</td>
<td>0.9620</td>
<td>0.9624</td>
<td>0.9354</td>
<td>0.9329</td>
<td>0.9586</td>
</tr>
<tr>
<td>R², not differenced</td>
<td>0.7559</td>
<td>0.7523</td>
<td>0.6048</td>
<td>0.6405</td>
<td>0.9251</td>
<td>0.9142</td>
<td>0.9255</td>
<td>0.9263</td>
<td>0.8749</td>
<td>0.8703</td>
<td>0.9189</td>
</tr>
<tr>
<td>R, 1-year differencing</td>
<td>0.1039</td>
<td>0.0736</td>
<td>0.1483</td>
<td>0.2374</td>
<td>0.3843</td>
<td>0.3961</td>
<td>0.3633</td>
<td>0.3801</td>
<td>0.3997</td>
<td>0.4009</td>
<td>0.4715</td>
</tr>
<tr>
<td>Mean Deviation</td>
<td>0.0211</td>
<td>0.0224</td>
<td>0.0229</td>
<td>0.0229</td>
<td>0.0266</td>
<td>0.0095</td>
<td>0.0129</td>
<td>0.0115</td>
<td>0.0117</td>
<td>0.0125</td>
<td>0.0095</td>
</tr>
</tbody>
</table>
Appendix B Model Fit Statistics MAC1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model specification:</td>
<td></td>
</tr>
<tr>
<td>Individual-level covariates</td>
<td></td>
</tr>
<tr>
<td>Centered age (cubic specification)</td>
<td>⋅</td>
</tr>
<tr>
<td>In education (time-varying)</td>
<td>⋅</td>
</tr>
<tr>
<td>Educational level</td>
<td>⋅</td>
</tr>
<tr>
<td>Duration since graduation (quadratic)</td>
<td>⋅</td>
</tr>
<tr>
<td>Education level*baseline hazard function</td>
<td>⋅</td>
</tr>
<tr>
<td>Partnership status (time-varying)</td>
<td>⋅</td>
</tr>
<tr>
<td>Duration since 1st partnership (quadratic)</td>
<td>⋅</td>
</tr>
<tr>
<td>Macro-level covariates</td>
<td></td>
</tr>
<tr>
<td>Unemployment (lagged 1 year)</td>
<td>⋅</td>
<td></td>
</tr>
<tr>
<td>Unemployment (lagged 1 year)*Age-group</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age1519</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age2024</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age2529</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age3034</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age3539</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age4044</td>
<td></td>
</tr>
<tr>
<td>. urlag1*age4549</td>
<td></td>
</tr>
<tr>
<td>Unemployment (lagged 1 year)Age-groupEducation</td>
<td></td>
</tr>
<tr>
<td>Unemployment (lagged 10 years)*Age-group</td>
<td></td>
</tr>
<tr>
<td>. urlag10*age3034</td>
<td></td>
</tr>
<tr>
<td>. urlag10*age3539</td>
<td></td>
</tr>
<tr>
<td>. urlag10*age4044</td>
<td></td>
</tr>
<tr>
<td>. urlag10*age4549</td>
<td></td>
</tr>
<tr>
<td>Correlation between fitted and observed MAC1</td>
<td></td>
</tr>
<tr>
<td>R, not differenced</td>
<td>0,9567</td>
<td>0,9495</td>
<td>0,9251</td>
<td>0,9739</td>
<td>0,8644</td>
<td>0,8638</td>
<td>0,9473</td>
<td>0,9465</td>
<td>0,8674</td>
<td>0,9515</td>
<td>0,9712</td>
</tr>
<tr>
<td>R², not differenced</td>
<td>0,9152</td>
<td>0,9016</td>
<td>0,8559</td>
<td>0,9485</td>
<td>0,7471</td>
<td>0,7462</td>
<td>0,8973</td>
<td>0,8959</td>
<td>0,7523</td>
<td>0,9053</td>
<td>0,9432</td>
</tr>
<tr>
<td>R, 1-year differencing</td>
<td>0,3094</td>
<td>0,1842</td>
<td>0,4172</td>
<td>0,4443</td>
<td>0,3689</td>
<td>0,3698</td>
<td>0,3761</td>
<td>0,3618</td>
<td>0,4063</td>
<td>0,4260</td>
<td>0,4449</td>
</tr>
<tr>
<td>Mean Deviation</td>
<td>0,5013</td>
<td>0,5052</td>
<td>0,8537</td>
<td>0,4491</td>
<td>0,7457</td>
<td>0,5090</td>
<td>0,4035</td>
<td>0,3665</td>
<td>0,4915</td>
<td>0,3422</td>
<td>0,2832</td>
</tr>
</tbody>
</table>