Infection Risk at Work, Automatability, and Employment

Ana L. Abeliansky Klaus Prettner Roman Stöllinger

WIC Colloquium January 17, 2024

Introduction

Public domain: https://tinyurl.com/2kmf4858

Introduction

KUKA Systems, CC BY-SA 3.0: https://tinyurl.com/3mfu3t85

Industrial robots worldwide

Worldwide Stock of Operational Industrial Robots (source: IFR, 2018)

Different forms of automation

- 1 Industrial robots (mass production).
- 2 3D printers (customized production).
- 3 Autonomous driving (taxis and trucks).
- Machine learning and AI:
 - ChatGPT,
 - writing reports, newsflashes, ads, etc.,
 - diagnosing diseases (IBM Watson),
 - doing science.

Literature so far

What are the causes of automation?

- 1 Technological change (Frey and Osborne, 2017; Arntz et al., 2017).
- 2 High wages (Acemoglu and Restrepo, 2018; Krenz et al., 2021).
- 3 Labor market tightness (Cords and Prettner, 2022).
- Oemographic change (Acemoglu and Restrepo, 2022; Abeliansky and Prettner, 2023).

Global robot density and demography

Global Robot Density. Source: Abeliansky and Prettner (2023)

This paper

Is there a role for transmissible diseases?

- Robots cannot be infected by (biological) pathogens.
- Robots do not transmit diseases.
- Robots are typically not on sick leave.
- Robots do not suffer from reduced productivity when sick and from long-term consequences of infection.
- ⇒ All of this should imply that a pandemic raises the incentives to automate.

This paper

Is there indication that the pandemic matters?

- We provide a theory of the decision to employ workers versus robots in the face of a pandemic.
- ② We test the theory on Austrian employment data before and after COVID-19.

Theory: Final goods production and tasks

Goods producers have access to a production function of the form

$$Y_t = K_t^{1-\alpha} \sum_{\omega=1}^J X_{t,\omega}^{\alpha},$$

where

- K_t is traditional capital (the assembly line);
- $x_{t,\omega}$ are tasks performed along the assembly line.
- The inverse demand function for specific tasks follows as

$$pr_{t,\omega} = \alpha K_t^{1-\alpha} x_{t,\omega}^{\alpha-1}.$$

Theory: Task production

 Tasks can be supplied according to a production function of the form

$$x_{t,\omega} = \left[a_{t,l,\omega}(i_{t,l,\omega}) \cdot I_{t,\omega} + a_{t,p,\omega} \cdot p_{t,\omega}\right]^{\beta},$$

where

- $a_{t,l,\omega}(i_{t,l,\omega})$ is the productivity of humans;
- $a_{t,p,\omega}$ is the productivity of robots;
- technically, humans and robots are perfect substitutes.
- Task suppliers (could be in-house) maximize profits given by

$$\begin{split} \pi_{t,\omega} &= \textit{pr}_{t,\omega} \textit{x}_{t,\omega} - \textit{w}_{t,l} \textit{l}_{t,\omega} - \gamma \textit{rp}_{t,\omega} \\ &= \alpha \textit{h}_t^{1-\alpha} \left[\textit{a}_{t,l,\omega} (\textit{i}_{t,l,\omega}) \cdot \textit{l}_{t,\omega} + \textit{a}_{t,p,\omega} \cdot \textit{p}_{t,\omega} \right]^{\alpha\beta} - \textit{w}_{t,l} \textit{l}_{t,\omega} - \gamma \textit{rp}_{t,\omega}. \end{split}$$

Theory: Employment and robot use

Profit maximization implies

$$\frac{\partial \pi_{t,\omega}}{\partial I_{t,\omega}} = 0,$$
$$\frac{\partial \pi_{t,\omega}}{\partial p_{t,\omega}} = 0.$$

This allows determining optimal human employment and robot use:

$$\begin{split} I_{t,\omega} &= \left[\frac{w_{t,l}}{a_{t,l,\omega}(i_{t,l,\omega})\alpha^2\beta K_t^{1-\alpha}}\right]^{\frac{1}{\alpha\beta-1}} \cdot \frac{1}{a_{t,l,\omega}(i_{t,l,\omega})}, \\ p_{t,\omega} &= \left[\frac{\gamma r}{a_{t,p,\omega}\alpha^2\beta K_t^{1-\alpha}}\right]^{\frac{1}{\alpha\beta-1}} \cdot \frac{1}{a_{t,p,\omega}}. \end{split}$$

Theory: Production choice I (profits)

• Profits of firms that produce with workers $(\pi_{t,\omega,l})$:

$$\pi_{t,\omega,l} = (1 - \alpha\beta)\alpha K_t^{1-\alpha} \left[\frac{w_{t,l}}{a_{t,l,\omega}(i_{t,l,\omega})\alpha^2\beta K_t^{1-\alpha}} \right]^{\frac{\alpha\beta}{\alpha\beta-1}}.$$

• Profits of firms that produce with robots $(\pi_{t,\omega,p})$:

$$\pi_{t,\omega,p} = (1 - \alpha\beta)\alpha K_t^{1-\alpha} \left[\frac{\gamma r}{\mathsf{a}_{t,p,\omega}\alpha^2\beta K_t^{1-\alpha}} \right]^{\frac{\alpha\beta}{\alpha\beta-1}}.$$

• Sort tasks according to the **effective cost of production** and search for a solution where $\pi_{t,\omega,l} = \pi_{t,\omega,p}$.

Theory: Production choice II (cut-off productivity)

• After some reformulations, we arrive at the cut-off condition:

$$\frac{a_{t,I,\omega}(i_{t,I,\omega})}{a_{t,p,\omega}} = \frac{w_{t,I}}{\gamma r}.$$

- Interpretation:
 - LHS: productivity ratio between workers and robots.
 - RHS: Cost ratio between workers and robots.
 - In case of a higher productivity ratio, task is performed by workers.
 - In case of a lower productivity ratio, task is performed by robots.

Theory: Sorting of tasks according to automatibility

- If $\frac{a_{t,l,\omega}(i_{t,l,\omega})}{a_{t,p,\omega}} > \frac{w_{t,l}}{\gamma r}$, task is produced by workers.
- If $\frac{a_{t,l,\omega}(i_{t,l,\omega})}{a_{t,p,\omega}} < \frac{w_{t,l}}{\gamma r}$, task is produced by robots.
- If a pandemic occurs, $i_{t,l,\omega}$ shifts upwards.
- This changes the ratio of productivity between workers and robots.
- **However:** This only affects workers who are susceptible to automation.

$$\frac{a_{t,l,\omega}(i_{t,l,\omega})}{a_{t,p,\omega}}$$

Theory: Sorting of tasks according to automatibility

- If $\frac{a_{t,l,\omega}(i_{t,l,\omega})}{a_{t,\rho,\omega}} > \frac{w_{t,l}}{\gamma r}$, task is produced by workers.
- If $\frac{a_{t,l,\omega}(i_{t,l,\omega})}{a_{t,p,\omega}} < \frac{w_{t,l}}{\gamma r}$, task is produced by robots.
- If a pandemic occurs, $i_{t,l,\omega}$ shifts upwards.
- This changes the ratio of productivity between workers and robots.
- However: This only affects workers who are susceptible to automation.

Testable hypotheses

Testable hypotheses

- 1 Automation risk reduces employment.
- 2 The COVID-19 pandemic has **negative effects** on employment for workers that exhibit a **high automation risk**.
- The COVID-19 pandemic has no effect on employment for workers that that exhibit a low automation risk.

Empirical strategy

Regression equation:

$$L_{g,s,a,\omega,j,r,t} = \beta_0 + \beta_1 \cdot VTR_\omega + \beta_2 \cdot C19 + \beta_3 \cdot RTI_\omega + \beta_4 \cdot (VTR_\omega \cdot C19) + g + s + a + j + r + \omega + \epsilon_{g,s,a,\omega,j,r,t},$$

where

- VTR is the viral transmission risk and RTI the automatibility of occupation ω ;
- We control for gender (g), skills (s), age (a), industry (j), and region (r);
- Our hypotheses imply:
 - Hypotheses 1: $\beta_3 < 0$;
 - Hypothesis 2: $\beta_4 < 0$ for automatable jobs;
 - Hypothesis 3: $\beta_4 = 0$ for non-automatable jobs.

Data sources

- Time period: 2015-2021.
- Austrian microcensus ("Mikrozensus Arbeitskräfteerhebung"):
 - employment,
 - hours worked (work volume),
 - age, gender, education, industry, region, occupation.
- VTR: constructed for Austria based on Chernoff and Warman (2023).
- RTI: constructed for Austria based on Autor et al. (2003).

Results

Table: COVID-related labor market outcomes

	Employment (log)			Work volume (log)		
Sample:	Automatable occupations	Non automatable occupations	All occupations	Automatable occupations	Non automatable occupations	All occupations
RTI	-0.3856** (0.1313)	-0.1330 (0.1282)	-0.1431 (0.0944)	-0.5919*** (0.0935)	-0.1219 (0.2098)	-0.1829 (0.1394)
VTR	0.5726* (0.2756)	0.3205***	0.4102** (0.1305)	0.4733* (0.2154)	0.3840**	0.4031* (0.1879)
VTR x C19	-0.0772** (0.0214)	0.0596 (0.0661)	0.0296 (0.0357)	-0.1513*** (0.0390)	0.0447 (0.1062)	-0.0032 (0.0573)
C19	0.0214) 0.0207*** (0.0051)	-0.0188 (0.0292)	-0.0155 (0.0157)	-0.0138 (0.0145)	-0.0811* (0.0359)	-0.0676** (0.0208)
Controls	√	✓	✓	✓	√	√
Industry FE	✓	✓	✓	✓	✓	✓
Occupation FE	✓.	✓.	✓	✓.	✓	✓.
Region FE	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓
Observations R-sq.	96,671 0.3515	75,141 0.3472	171,812 0.3326	92,693 0.3279	72,185 0.3049	164,878 0.3017

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Two-way standard errors clustered at the level of ISCO-1-digit occupations and years. Standard errors in parenthesis.

Employment over time across different risk groups

Employment in different occupations before and after COVID-19

Conclusions

- Automatibility affects employment in the Austrian labor market.
- Viral transmission risk at work affects employment in a pandemic.
- The employment effect, however, is only visible for automatable jobs.
- Effects are stronger for work volume as compared with number of workers.
- This implies that the "Kurzarbeit" schemes have had the intended effects.

Thank you very much!