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Dictionary Learning for Sparse Audio Inpainting
Georg Tauböck , Shristi Rajbamshi, and Peter Balazs

Abstract—The objective of audio inpainting is to fill a gap in an
audio signal. This is ideally done by reconstructing the original
signal or, at least, by inferring a meaningful surrogate signal.
We propose a novel approach applying sparse modeling in the
time-frequency (TF) domain. In particular, we devise a dictionary
learning technique which learns the dictionary from reliable parts
around the gap with the goal to obtain a signal representation
with increased TF sparsity. This is based on a basis optimization
technique to deform a given Gabor frame such that the sparsity
of the analysis coefficients of the resulting frame is maximized.
Furthermore, we modify the SParse Audio INpainter (SPAIN) for
both the analysis and the synthesis model such that it is able to
exploit the increased TF sparsity and—in turn—benefits from dic-
tionary learning. Our experiments demonstrate that the developed
methods achieve significant gains in terms of signal-to-distortion
ratio (SDR) and objective difference grade (ODG) compared with
several state-of-the-art audio inpainting techniques.

Index Terms—Audio inpainting, convex, dictionary, frame,
Gabor, learning, optimization, sparsity, time-frequency.

I. INTRODUCTION

AUDIO signals are often prone to localized distortions
resulting in modification or even loss of certain sections.

A signal processing technique that aims at restoring such gaps,
i.e., missing consecutive samples, while still keeping perceptible
audio artifacts as small as possible is usually referred to as audio
inpainting [1]. It has attracted a lot of attention as it has var-
ious important applications. Examples include reconstruction
of audio samples caused by scratches in CDs or old record-
ings [2], compensation of audio packet losses in communication
networks [3], [4], and others.

A typical approach to deal with the audio inpainting task is to
utilize reliable signal parts jointly with some prior information
about the signal. Some of the first methods were proposed by
Janssen et al. [5], [6] and Etter [7]. These techniques exploit
available signal information in the original (time) domain and
fill the missing samples by linear prediction using (learned)
autoregressive coefficients. Due to their excellent performance
they are still considered state-of-the-art. For a more comprehen-
sive study on autoregressive-based audio inpainting we refer to,
e.g., [8]–[10].
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Since the arrival of sparse signal representations and compres-
sive sensing [11]–[15], several other audio inpainting techniques
have been introduced [1], [16]–[18], most notably [1], which
coined the term “audio inpainting” motivated by analogous
image processing tasks. These methods tackle the inpainting
problem by leveraging the (approximate) sparsity of real-world
audio signals with respect to suitable (redundant) dictionaries.

It is noteworthy that for long gaps (≥ 100 ms) all the afore-
mentioned methods start to fail due to the non-stationarity of
audio signals over longer periods of time. Therefore, other
techniques have been introduced for long gaps, e.g., sinusoidal
modeling [19], [20], similarity graph approaches [4], [21], or
methods based on deep neural networks [22], [23]. Their focus
is no longer to reconstruct the true original signal but rather to
fill the gaps in a perceptually pleasant and meaningful way.

In this contribution, we concentrate on medium gap length
settings (10 ms – 100 ms). Note that the design of audio inpaint-
ing methods for such scenarios is quite challenging since it is
still intended to recover the original signal but the gap duration
is close to the limit for which stationarity can be justified.
This is probably the reason, why research contributions dealing
with medium gaps are essentially only the few ones mentioned
above. This is in stark contrast to the related problem of audio
declipping with a substantial amount of available literature,
e.g., [24]–[33]. Clipping is a non-linear distortion mechanism
that degrades the signal whenever the modulus of its amplitude
exceeds a certain threshold. The underlying clipping model
allows to exploit signal information also within the degraded
signal parts. Therefore, it allows for more reliable signal recon-
structions. Note that inpainting with randomly selected missing
samples as studied in, e.g., [16] is closer to the clipping problem.
As long as the underlying probability model avoids occurrences
of long sequences of missing samples with high probability,
reconstruction error probabilities can be expected to be small
since the short gap setting (≤ 10 ms) is present with high
probability.

A. Motivation and Contributions

Our audio inpainting approach is inspired by the recently
introduced algorithm SParse Audio INpainter (SPAIN) [17] and
extends our work in [34]. SPAIN is an adaptation of the so-
called SParse Audio DEclipper (SPADE) algorithm [28] to the
inpainting problem and exploits sparsity with respect to tight
(Gabor) frames [35], [36]. In [17], both synthesis and analy-
sis models are discussed and an efficient implementation with
segment-wise application of the algorithm is presented. More
specifically, the time-domain signal is segmented using overlap-
ping Hann windows, sparsity with respect to an overcomplete
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Discrete Fourier Transform (DFT) dictionary is exploited, and
the restored blocks are combined using an overlap-add scheme.
However, like many other sparsity-based inpainting techniques,
SPAIN suffers from a drop of the signal’s energy withing the
filled gap, which is the more pronounced the larger the gap is.
As explained in [18], this is caused by the chosen regularizer that
penalizes the deviation of transformed signal’s coefficients from
the model under consideration. While [18] investigates weighted
�1-norms to cope with these systematic biases, we propose a
modification of the original SPAIN algorithm (for both analysis
and synthesis variants): instead of the mentioned segment-wise
processing scheme, we apply the algorithm to the signal parts in
the neighborhood of the gap as a whole. Furthermore, we replace
the involved �0-norm1 by an �0,∞-norm1, where the supremum
is taken over time.

Finally, and this is certainly our key contribution, we present
a basis optimization technique which modifies the underlying
dictionary in order to obtain a representation with increased
sparsity. Here, the main idea is to learn the dictionary from
reliable signal parts around the gap. By means of the resulting
sparsity enhanced dictionary our modified SPAIN algorithm
exhibits a significantly improved reconstruction performance.
Note that we are not aware of any other dictionary learning
techniques for audio inpainting for the medium gap setting.
There are several related dictionary learning contributions for
audio inpainting but their focus is on short gaps or on audio
declipping [30], [37], [38]. We also want to emphasize that we
cannot simply use out-of-the-shelf dictionary learning methods
like K-SVD [39], MOD [40], or others [41], because we require
our learned dictionary to satisfy specific structural properties,
see Subsection V-A.

B. Notation

Scalars, vectors, and matrices are designated by Roman letters
a, b, . . ., a, b, . . ., andA,B, . . ., respectively. The ith component
of the vector u is ui−1; the element in ith row and jth column
of the matrix A is Ai−1,j−1. The superscripts T, H, and ∗ denote
transposition, Hermitian transposition, and (element-wise) com-
plex conjugation, respectively. IN stands for theN ×N identity
matrix; 0M×N stands for the M ×N all zero matrix. The
floor function �a� is defined as the largest integer ≤a, whereas
[ · ]

N
= [ · mod N ] abbreviates the modulo-N operation due to

circular indexing. For a setS , we write card(S) for its cardinality
andχS (·) is the indicator function onS , which is 0 if its argument
is in S and ∞ otherwise. The notation AS is used to indicate the
column submatrix of A consisting of the columns indexed by
S . Similarly, for x ∈ CN , xS denotes the subvector in Ccard(S)

consisting of the entries of x indexed by S . For a vector u =
[u0, u1, . . . , uN−1]

T, supp(u) denotes its support, i.e., the set
where the coefficients are non-zero, and ‖u‖0 = card(supp(u)),
‖u‖1 = |u0|+ |u1|+ . . .+ |uN−1|, and ‖u‖2 =

√
uHu, are its

�0-norm, �1-norm, and �2-norm, respectively. For a matrix A,
tr(A) is its trace, ‖A‖F =

√
tr(AHA) is its Froebenius norm,

1We adopt the common convention to refer to these mathematical objects as
norms, although they are not norms in the strict sense.

and ‖A‖∞,∞ is the largest modulus of all entries of A. Re(·)
and Im(·) denote real and imaginary part of its argument,
respectively.

For the audio inpainting specific notation we adopt most of
the conventions from [17], [18]: Let x ∈ RN be the time-domain
signal and assume that the indices of its missing (or unreliable)
samples are known. This will be referred to as the gap. The
samples outside the gap will be considered and called reliable.
Clearly, the recovered signal should maintain consistency with
the reliable part. In order to mathematically describe this, we
introduce a (convex) set Γx as the set of all feasible signals

Γx �
{
y ∈ RN : MRy = MRx

}
, (1)

where MR : RN → RN is the binary “reliable mask” projection
operator keeping the signal samples corresponding to the reliable
part, while setting the others to zero.

II. GABOR SYSTEMS AND FRAMES

The audio inpainting approach presented in this contribution
relies on the observation that audio signals are (approximately)
sparse in the time-frequency domain. More specifically, the Ga-
bor transform—also denoted as Short-Time Fourier Transform
(STFT)—of a real-world audio signal typically distributes main
portions of the signal’s energy only within some subareas of the
time-frequency plane; the remaining areas contain merely small
fractions of the signal energy. Note that the Gabor transform
computes inner products of the input signal with time-shifted
and frequency-modulated window functions [35], [36]. For the
discrete Gabor transform (DGT), the integer-valued hop size a
specifies the time-translations of the window g. The number2 of
modulations (frequency shifts) is denoted by M , so that there
are in total M frequency channels. It is natural to require that
a divides the signal length N . Then, the system consists of
P = MN/a Gabor atoms g(p) ∈ CN , p = 0, . . . , P−1. The
whole system

{g(p) : p = 0, . . . , P − 1}
= {g(k,m) : k = 0, . . . , (N/a)−1,m = 0, . . . ,M−1}

with

g(k,m)
n = g[n−ak]N e2πi(n−ak)m/M and p = kM +m

is referred to as the Gabor dictionary.
Note that the Gabor window g is usually identified with its

shorter counterpart keeping only those elements of g that are
within the smallest interval containing the support of g. The
length of this interval is denoted as window length wg and is
usually much smaller than N .

For suitable combinations of g and the parameters a and M ,
the resulting Gabor system forms a frame for CN and, hence,
allows perfect reconstruction [35], [42]. That is, any x ∈ CN

can be represented in a stable way as a linear combination of
the Gabor vectors. Although Gabor bases can be constructed,
they have undesired properties [36]. Therefore, overcomplete

2In implementations, this value corresponds to the length of the fast Fourier
transform (FFT).
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systems which allow non-unique signal representations are usu-
ally preferred. Note that the Gabor atoms are complex vectors,
although we work only with real-valued audio signals.

In frame theory, the so-called analysis operator A : CN →
CP generates coefficients from the signal, whereas its adjoint
D = AH, the synthesis operator D : CP → CN , produces a
signal from the coefficients. Its composition S = DA is denoted
as frame operator. Whenever we work with Gabor frames, we
use the subscript notation AG and DG for analysis and synthesis
operators, respectively, to emphasize the Gabor structure.

In this paper, we focus on frames which correspond to the
so-called painless case [36], [43], [44]. Such frames are conve-
nient from both theoretical and practical perspectives, since they
allow for a simple and computationally efficient computation
of their canonical dual frames [35], and are typically the ones
considered in signal processing. Their analysis, synthesis, and
frame operators satisfy the “painless condition”

S = AHA = DDH =

⎡⎢⎣S0,0 0
. . .

0 SN−1,N−1

⎤⎥⎦ (2)

with Sn,n > 0, n = 0, . . . , N−1, i.e., the frame operator
matrix3 is a diagonal positive-definite matrix. Clearly, tight
frames, i.e., frames where S = λIN , fall within the class of
painless frames. For Gabor frames, wg ≤ M implies (2), see,
e.g., [44, Corollary 3]. We note that [33] considers the painless
case in the context of audio declipping (but finally only uses the
tight setting).

III. SPAIN (SPARSE AUDIO INPAINTER)

In this section, we will briefly introduce the SPAIN algorithm
presented in [17]. Being an adaptation of the SParse Audio
DEclipper (SPADE) algorithm [28] to the inpainting problem,
SPAIN differs from SPADE only in the definition of the set
of feasible signals Γx (see (1) for its SPAIN definition). Ac-
cordingly, SPAIN comes in two variants: the first one exploits
analysis sparsity, the second one exploits synthesis sparsity (both
in the time-frequency domain). Note that the sparse signal pro-
cessing literature relied for a long time on the so-called synthesis
model, where one seeks for a small number of coefficients
synthesizing the desired signal [39], [45]–[48]. More recently,
the analysis model appeared, where one looks directly for the
signal, with the constraint that its coefficients after analysis
are sparse [28], [49]. Note, however, that we can only expect
these coefficients to be approximately sparse, since underlying
uncertainty principles restrict the maximum degree of sparsity in
this domain [36], [50], [51]. If the synthesis/analysis operators
are invertible, both approaches are equivalent. This corresponds
to the basis case, and as said above, usually this is avoided.

The two variants of SPAIN aim at solving the following
optimization tasks,

min
b,y

‖b‖0 s.t. y ∈ Γx and ‖Ay − b‖2 ≤ ε, (3a)

3For ease of notation, we do not distinguish between operators and their matrix
representation with respect to the canonical basis throughout the paper.

min
b,y

‖b‖0 s.t. y ∈ Γx and ‖y −Db‖2 ≤ ε, (3b)

where (3a) and (3b) present the formulation referred to as the
analysis and the synthesis variant, respectively. In both cases
the y that (jointly with b) achieves the minimum will be the
reconstructed time-domain signal. However, due to its huge
computational complexity, a brute-force solution of (3) is infea-
sible. As an alternative, SPAIN applies the Alternating Direction
Method of Multipliers (ADMM) [52]—carefully modified—to
minimize the above non-convex problems.

The ADMM is able to solve problems of the form

min
y

f(y) + g(Ay), (4)

where y ∈ CN , A : CN → CP is a linear operator, and f and
g are real convex functions. A reformulation of (4) yields

min
y,b

f(y) + g(b) s.t. Ay − b = 0,

from which the Augmented Lagrangian (in scaled form) is
computed. Finally, this Lagrangian is minimized individually
with respect to each involved variable in an iterative fashion (also
incorporating a combination update step) until a sufficiently
accurate solution is obtained. Note that in case of SPAIN only
an approximate solution can be expected, since (3) violates the
convexity assumption.

Of crucial importance for SPAIN is also its segment-wise
application, where, first, the time-domain signal is segmented
using overlapping windows; second, the algorithm is applied to
each segment individually using an overcomplete DFT frame;
and, finally, the restored blocks are combined via an overlap-add
scheme.

If we would refrain from the segment-wise implementation
and would aim at solving (3) for the signal consisting of the
gap plus the adjacent parts of length wg before and after the
gap as a whole using a Gabor frame of appropriate dimension,
this approach would fail completely for medium length gaps.
This behavior is caused by the chosen regularizer ‖ · ‖0, which
penalizes the Gabor coefficients globally instead of locally.
More specifically, the reconstructed signal will vanish within the
gap because the Gabor coefficients remain to be sparse globally.4

As an alternative strategy that avoids the need for segmentation
we propose a modification of the original SPAIN algorithm in
the next section. Note that the segmentation step in the original
SPAIN algorithm implicitly introduces local processing.

IV. MODIFIED SPAIN ALGORITHM

Let us recall, see Section II, that Gabor systems impose
a time-frequency structure. In the discrete setting, the P =
MN/a analysis coefficients of the DGT can be rearranged5

into an M × (N/a) matrix, whose column and row indices
correspond to discrete time and discrete frequency, respec-
tively. Mathematically, this matrixification can be expressed

4Note that the reduced sparsity in frequency direction around the gap edges
due to the introduced discontinuities will be compensated for by the increased
sparsity in the middle of the gap.

5Note that we have assumed that N is a multiple of a.
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via the (invertible) mapping τ : CP → CM×(N/a); its inverse
mapping τ−1 represents a vectorization. Furthermore, for any
real-valued audio signal x, the complex-valued matrix τ(AGx)
is conjugate-symmetric with respect to the frequency/row in-
dex. Thus, the available information is preserved if only the
rows corresponding to the first M ′ = �M/2�+ 1 frequency
indices are kept; the remaining rows are easily re-obtained
by invoking conjugate-symmetry. We represent this restric-
tion operation with the mapping σ : CM×(N/a) → CM ′×(N/a);
its reversed operation, i.e., the conjugate-symmetric exten-
sion, is denoted by σ† : CM ′×(N/a) → CM×(N/a). For nota-
tional simplicity, we also introduce the composite mappings
η(·) � σ(τ(·)) and η†(·) � τ−1(σ†(·)). The mapping RN →
CM ′×(N/a), x → η(AGx) is well known as real DGT [53], [54].
For each X = [x0 x1 · · · x(N/a)−1] ∈ CM ′×(N/a) let∥∥X∥∥

0,∞ � max
{∥∥x0∥∥0, ∥∥x1∥∥0, . . . ,∥∥x(N/a)−1

∥∥
0

}
(5)

denote the �0,∞-norm, which, if applied to the real DGT of an
audio signal, measures the maximum number of its non-zero
frequency components, where the maximum is taken over time,
see also [14].

Instead of (3), we propose to solve the following two opti-
mization problems,

min
B,y

∥∥B∥∥
0,∞ s.t. y ∈ Γx and (6a)∥∥η (AGy)− B

∥∥
F ≤ ε,

min
B,y

∥∥B∥∥
0,∞ s.t. y ∈ Γx and∥∥y −DG η† (B)

∥∥
2
≤ ε, (6b)

where, again, (6a) and (6b) present the formulation referred to
as the analysis and the synthesis variant, respectively.

As in the original SPAIN setting [17], we will adapt the
ADMM technique to solve problems (6a) and (6b).

A. A-SPAIN Modified

We will first consider the analysis variant (6a). For fixed
sparsity parameter k, define

Sk �
{
X ∈ CM ′×(N/a) :

∥∥X∥∥
0,∞ ≤ k

}
.

In order to apply the ADMM algorithm, we rewrite (6a) with
ε = 0 as

min
B,y

χSk (B) + χ
Γx
(y) s.t. AGy − η† (B) = 0

The Augmented Lagrangian is given as,

Lδ(y, λ,B) = χSk (B) + χ
Γx
(y) + λT (AGy − η† (B)

)
+

δ

2

∥∥AGy − η† (B)
∥∥2
2
,

leading to the Augmented Lagrangian in scaled form [55],

Lδ(y, r,B) = χSk (B) + χ
Γx
(y)

+
δ

2

∥∥AGy − η† (B) + r
∥∥2
2
− δ

2
‖r‖22.

The update rules of ADMM now yield,

B(i+1) = arg minB∈Sk

∥∥∥AGy
(i) − η† (B) + r(i)

∥∥∥
2

(7a)

y(i+1) = arg miny∈Γx

∥∥∥AGy − η†
(
B(i+1)

)
+ r(i)

∥∥∥
2

(7b)

r(i+1) = r(i) +AGy
(i+1) − η†

(
B(i+1)

)
. (7c)

It is important to observe that the conjugate-symmetry is pre-
served in each of these steps, provided that the initialization
vectors y(0) and r(0) are real-valued and conjugate-symmetric,
respectively.

TheB-update (7a) is solved exactly [15, p. 42] using the time-
frequency hard-thresholding operator HTF

k : CM ′×(N/a) →
CM ′×(N/a) defined as

HTF
k

([
x0 x1 · · · x(N/a)−1

])
=

[Hk(x0)Hk(x1) · · ·Hk(x(N/a)−1)
]
,
(8)

where Hk(·) is—up to pre-scaling6—the conventional hard-
thresholding operator for vectors, which preserves the k ele-
ments with largest modulus and sets everything else to zero.
More specifically, the B-update (7a) is given by

B(i+1) = HTF
k

(
η
(
AGy

(i) + r(i)
))

.

As it is shown in Appendix A, the y-update (7b) can be
equivalently computed by an application of the inverse DGT
using the canonical dual window to

η†
(
B(i+1)

)
− r(i)

followed by a projection of the outcome onto the set of feasible
solutions Γx.

Remark 1: We note that an analogous statement for the special
case of a Parseval frame was shown in [55]. Our proof technique
generalizes this result to arbitrary frames satisfying the painless
condition (2). Moreover, it takes into account that Γx as defined
in (1) is a set of real-valued signals (in contrast to [55]), which
makes the situation slightly more complicated. This is caused
by the fact that Γx is not an affine subspace over the complex
field and some existing results cannot be applied.

The overall algorithm is initialized with a certain pre-defined
sparsity parameter k = s, which will be augmented in every tth

iteration by s, until the stopping criterion is met. Its pseudocode
is presented in Alg. 1, where we have used a more convenient
matrix notation, i.e.,R(i) = η(r(i)). Note that usually s = t = 1;
however, motivated by the original SPAIN algorithm, we allow
for more versatile settings in order to speed up the algorithm
(s > 1) or promote its convergence (t > 1). The input object
Dcd

G denotes the synthesis operator of the canonical dual Gabor
frame [35]. In practice, of course, only the windows for AG

and Dcd
G as well as the parameters a and M are passed to the

algorithm, and not the full matrices.

6In order to compensate for the conjugate-symmetry and still select the correct
elements, the modulus has to be scaled for at most two vector elements (i.e., at
frequency 0 and, for even M , also at frequency M/2).
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B. S-SPAIN Modified

We now consider the synthesis variant (6b). Let us fix a
sparsity parameter k and rewrite (6b) with ε = 0 as

min
B,y

χSk (B) + χ
Γx
(y) s.t. DG η† (B)− y = 0

The Augmented Lagrangian is given as,

Lδ(y, λ,B) = χSk (B) + χ
Γx
(y) + λT (DG η† (B)− y

)
+

δ

2

∥∥DG η† (B)− y
∥∥2
2
,

leading to the Augmented Lagrangian in scaled form [55],

Lδ(y, r,B) = χSk (B) + χ
Γx
(y)

+
δ

2

∥∥DG η† (B)− y + r
∥∥2
2
− δ

2
‖r‖22.

The update rules of ADMM now yield,

B(i+1) = arg minB∈Sk

∥∥∥DG η† (B)− y(i) + r(i)
∥∥∥
2

(9a)

y(i+1) = arg miny∈Γx

∥∥∥DG η†
(
B(i+1)

)
− y + r(i)

∥∥∥
2

(9b)

r(i+1) = r(i) +DG η†
(
B(i+1)

)
− y(i+1). (9c)

Here, the conjugate-symmetry is preserved in each of these steps,
provided that both initialization vectors y(0) and r(0) are real-
valued.

The B-update (9a) is a challenging task to solve; in fact,
it is a sparse reconstruction problem utilizing the �0,∞-norm.
However, we will rely on the convenient ADMM behavior that
it still converges even when the individual steps are computed
only approximately. Adapting the idea in [55] to our setting, we
suggest to apply the time-frequency hard-thresholding operator
HTF

k to the analysis coefficients of y(i) − r(i) with respect to the

canonical dual frame, or, more formally,

B(i+1) ≈ B(i+1)
appr = HTF

k

(
η
(
Acd

G

(
y(i) − r(i)

)))
.

Here, Acd
G denotes the analysis operator of the canonical dual

Gabor frame. A formal justification for this approximation is
given in Appendix B, extending the argument in [55] to arbitrary
frames. Again, the overall algorithm is initialized with a certain
pre-defined sparsity parameter k = s, which will be augmented
in every tth iteration by s, until the stopping criterion is met, see
Alg. 2.

Remark 2: Both analysis and synthesis variants, i.e., A-
SPAIN-MOD and S-SPAIN-MOD, aim at solving the minimiza-
tion problem (6) with respect to the �0,∞-norm defined in (5).
Roughly speaking, A-SPAIN-MOD searches for a signal in the
feasible set Γx such that its real DGT is maximally sparse in
frequency direction for all time instants. Similarly, S-SPAIN-
MOD searches for TF coefficients which are maximally sparse
in frequency direction for all time instants such that a signal
in the feasible set Γx can be synthesized via the inverse real
DGT. As a matter of fact, a sparse representation with respect to
frequency prohibits the occurrence of peaks, which are typically
visible in the real DGT of the gapped signal around the gap
borders, see Fig. 1(c). This also illustrates the weakness of
“global” �0-minimization according to (3), i.e., that it does not
sufficiently penalize the signal in these specific “local” areas.
With �0,∞-minimization, we avoid that the signal is set to zero
within the filled gap without using the segmentation/overlap-add
technique of the original SPAIN implementation. Note that the
�0,∞-approach only exploits sparsity in frequency direction.
However, in contrast to audio declipping, the benefit of sparsity
in time-direction seems to be limited here.

From an algorithmic perspective we would like to point out
that the ADMM algorithm provides an elegant approach to
perform (approximate) �0,∞-minimization. Optimization with
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Fig. 1. Analysis coefficients of signal “a60_piano_schubert.” (a) and (b) depict the signal without gap, (c) and (d) with gap of length 40 ms. (a) and (c) use Gabor
dictionary, (b) and (d) use learned dictionary. The coefficients within the green rectangles are used for training. The sparsity of the coefficients within the blue
rectangles is analyzed in Fig. 2.

respect to the mixed �0,∞-norm is usually quite involved—not
only because of the �0-component, also the �∞-component
causes difficulties. We will see this in the next section, where
a conventional convex relaxation strategy is pursued to learn a
dictionary with respect to the �0,∞-criterion. In order to make
the resulting algorithm tractable in practice, we have to resort to
suboptimal simplifications and have to take additional measures
to obtain a reasonable substitution of the �∞-component. This is
avoided by the ADMM algorithm used in SPAIN-MOD: �0,∞-
minimization instead of �0-minimization is easily implemented
by replacing the conventional hard-thresholding operator by the
time-frequency hard-thresholding operatorHTF

k (·) introduced in
(8).

V. DICTIONARY LEARNING

As mentioned above, the success of all SPAIN variants (in-
cluding both original and modified versions) heavily depends on
the fact that most real-world audio signals have approximately
sparse representations with respect to Gabor dictionaries. One
could argue, that other dictionaries might allow for even more
sparse signal representations and, in turn, enhance the audio
inpainting performance, if they are used instead. However, it
is by far not immediate how to choose or design a dictionary
which exhibits superior audio inpainting capabilities compared
with the Gabor dictionary.

The idea, we intend to pursue, is to learn an optimized
dictionary from the reliable signal parts around the gap with the

purpose to obtain also a representation with increased sparsity
within the gap and, consequently, improved inpainting quality.
Clearly, this relies on the hypothesis that the optimum spar-
sifying dictionary does not vary too fast. Furthermore, some
additional reliable signal parts in the neighborhood of the gap are
needed for learning, so that a certain minimum distance between
adjacent gaps is desirable, in case more than one gap occurs.
In order to keep the learning effort low, we avoid to learn the
dictionary from scratch; our approach is to “deform” a given
Gabor dictionary.

A. Dictionary Learning Framework

Let us reconsider the modified SPAIN algorithm as discussed
in the previous section. According to (6), our goal is to construct
a frame satisfying the painless condition (2) with analysis op-
erator A such that for the degraded signal x, Ax is as sparse as
possible with respect to the �0,∞-norm in a neighborhood of the
gap. Mathematically, we aim at solving

min
A

∥∥∥ (η(Ax))N
∥∥∥
0,∞

s.t. AHA is diagonal, (10)

whereN represents the neighborhood. Assume that we are given
a Gabor frame satisfying the painless condition (2) with analysis
operator AG. Our next step is to “deform” this Gabor frame
using a unitary “deformation” operator W : CP → CP by the
definition of a modified analysis operator

A = WAG. (11)
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Here, we restrict to unitary deformations, since these pre-
serve the painless condition (2) due to AHA = AH

GW
HWAG =

AH
GAG = SG. Moreover, we only care about deformation opera-

tors which increase sparsity in frequency direction and which
preserve the conjugate-symmetry of the DGT of real-valued
signals. Hence, we additionally impose the following structural
constraint7 on W,

W : CP → CP , z → τ−1 (V τ(z)) (12)

with8 V ∈ CM×M being a unitary matrix with the special form
described below. It is evident that (12) represents a well-defined
unitary operator. In order to describe the structure of V, we have
to distinguish between M even and M odd. For M even, let

V = Ve =

⎡⎢⎢⎣
1 0
U

1
0 FU∗F

⎤⎥⎥⎦ , (13)

whereas for M odd,

V = Vo =

⎡⎣ 1 0
U

0 FU∗F

⎤⎦ (14)

with unitary U ∈ C�(M−1)/2�×�(M−1)/2� and flipping matrix

F =

⎡⎣ 0 1

···
1 0

⎤⎦ ∈ C�(M−1)/2�×�(M−1)/2�.

It is not difficult to see that for a conjugate-symmetric z we can
always choose the following representation,

W(z) = η† (Ue/o η(z)) (15)

with

Ue =

⎡⎣ 1 0
U

0 1

⎤⎦ and Uo =

[
1 0
0 U

]
, (16)

respectively. Combining (11), (15), and (10), we obtain

min
Ue/o∈Ue/o

∥∥∥Ue/o (η(AGx))N
∥∥∥
0,∞
,

where Ue/o denotes the set of all unitary matrices Ue/o with the
structure described in (16). Observe, however, that this is a highly
non-convex problem, so that further measures have to be taken
in order to obtain a solution.

To this end, we pursue the classical approach to relax �0-
norms to �1-norms [15], [45]. Furthermore, we replace the max-
operation in the definition of the �0,∞-norm by a summation
(i.e., in total we obtain an �1,1-norm9). This yields the following

7Roughly speaking, this construction avoids the mixing of “positive” and
“negative” frequencies.

8In order to prevent confusion, we emphasize that V τ(z) is a conventional
matrix-matrix product.

9Note that the �1,1-norm of a matrix is the same as the �1-norm of the vector
consisting of the matrix elements.

Fig. 2. Sparsity of analysis coefficients of signal “a60_piano_schubert,” using
the time-frequency hard-thresholding operator HTF

k applied to the coefficients
X within the blue rectangle of Fig. 1(a) for the Gabor dictionary and the blue
rectangle of Fig. 1(b) for the learned dictionary, respectively.

minimization problem,

Ûe/o = arg min
Ue/o∈Ue/o

∑
q∈N

∥∥Ue/o (η(AGx))q
∥∥
1
. (17)

Remark 3: We emphasize that the second replacement, i.e.,
max to summation, could be omitted. Apparently, retaining the
max-operation would be desirable from the conceptual point
of view, we have stressed above. But in our implementations
the summation variant was significantly faster than the max
variant. In fact, the replacement even turned out to be mandatory
in order to avoid exceeding the computational resources of
our simulation framework. Note that the summation variant
optimizes the deformation matrix W such that the sparsity with
respect to frequency is maximized10 on average for all time
instants in the considered neighborhood N . We are aware that
this approach does not guarantee that the sparsity is increased
equally for all time instants in N but for time instants within
and around the gap (used for inpainting) we can still expect a
considerably improved sparsity of the original signal. We further
facilitate this by restrictions via ρstart, d, and rmax defined in
Subsection V-B, which prohibit that the deformation matrix
W differs too significantly from the identity matrix, so that
stronger sparsity variations over time induced by W seem to be
unlikely. Our numerical experiments also confirm this behavior,
see Subsection VI-A, and in particular Fig. 2, which depicts the
sparsity gain achieved by the learned dictionary in terms of the
time-frequency hard-thresholding operator HTF

k , i.e., using an
�0,∞-measure. Hence, although suboptimal, the chosen average
optimality criterion seems to be reasonable for the learning
phase.

Finally, observe that the optimization (17) is effectively car-
ried out over the set U of unitary �(M − 1)/2� × �(M − 1)/2�
matrices U according to (16) with optimum Û given by

Û = arg minU∈U
∑
q∈N

∥∥UEe/o (η(AGx))q
∥∥
1
, (18)

where

10To prevent any confusion with this statement: sparsity maximization corre-
sponds to minimization of the number of non-zeros.
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Ee =
[
0�(M−1)/2�×1 I�(M−1)/2� 0�(M−1)/2�×1

]
,

Eo =
[
0�(M−1)/2�×1 I�(M−1)/2�

]
.

Let us assume we have found an optimized unitary matrix Û
(we will present an algorithm for this task in the next subsec-
tion). Inserting it into (16) and (13)/(14) yields Ûe/o and V̂e/o,
respectively, and, furthermore, via (12) and (11), we obtain the
analysis operator of the deformed frame as,

Â : CN → CP , y → τ−1
(
V̂e/o τ(AGy)

)
. (19)

Note that the synthesis operator of its canonical dual frame is
given by

D̂cd : CP → CN , z → Dcd
G τ−1

(
V̂H

e/oτ(z)
)
. (20)

This puts us in the position to reformulate Algs. 1 and 2 in a way
such that the learned sparsity-optimized frame is used instead
of the Gabor frame. More specifically, for the analysis variant
we replace AG with Â and Dcd

G with D̂cd. In the algorithm, the
(optimized) matrix Ûe/o is required11 as an additional input, see
Alg. 3.

For the synthesis variant, we suggest to still deform the
analysis operator, but here the one of the canonical dual frame.
Then, the synthesis operator of the corresponding original frame
is expected to represent any signal in the feasible set Γx with
fewer coefficients than the synthesis operator of the given Gabor
frame. Again, the algorithm requires11 the specification of the
(optimized) matrix Ûe/o as additional input, see Alg. 4.

B. Basis Optimization Technique

In order to solve (18), we adapt a basis optimization technique
originally developed in the context of channel estimation [56],

11The description of the algorithms with Ûe/o as input parameter is obtained
from (19) and (20) via (15), (11), and (12).

[57]. To simplify notation we set M̃ � �(M − 1)/2� and define
ηe/o(·) � Ee/oη(·) Because the minimization problem (18) is
non-convex (since U is not a convex set), standard convex
optimization techniques cannot be used. We therefore propose
an approximate iterative algorithm that relies on the following
facts [58, p. 8], [59].
� Every unitary M̃×M̃ matrixU can be represented in terms

of a Hermitian M̃×M̃ matrix H as U = eiH.
� The matrix exponential U = eiH can be approximated by

its first-order Taylor expansion, i.e., U ≈ IM̃ + iH.
Even though U is unitary and IM̃ + iH is not, this approxima-

tion will be close if ‖H‖∞,∞ is small. Because of this condition,
we construct U iteratively: starting with the identity matrix, we
perform a small update at each iteration, using the approximation
U ≈ IM̃ + iH in the optimization criterion but not for actually
updating U (thus, the iterated U is always unitary). More specif-
ically, at the rth iteration, we consider the following update of
the unitary matrix U(r):

U(r+1) = eiH
(r)

U(r) ,

whereH(r) is a small (with respect to ‖ · ‖∞,∞) Hermitian matrix

that remains to be optimized. Note that U(r+1) is again unitary
because both U(r) and eiH

(r)
are unitary.

Ideally, we would like to optimize H(r) according to (18), i.e.,
by minimizing∑
q∈N

∥∥U(r+1)Ee/o (η(AGx))q
∥∥
1

=
∑
q∈N

∥∥U(r+1) (ηe/o(AGx))q
∥∥
1

=
∑
q∈N

∥∥eiH(r)

U(r) (ηe/o(AGx))q
∥∥
1
.

Since this problem is still non-convex, we use the approximation
eiH ≈ IM̃ + iH, and thus the final minimization problem at the
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rth iteration is

Ĥ(r) = arg minH∈Hr

∑
q∈N

∥∥(IM̃ + iH)U(r) (ηe/o(AGx))q
∥∥
1
.

(21)

Here, Hr is the set of all Hermitian M̃×M̃ matrices H that are
small in the sense that ‖H‖∞,∞ ≤ ρr, where ρr is a positive
constraint level (a small ρr ensures a good accuracy of our
approximation U ≈ IM̃ + iH and also that eiĤ

(r)
is close to IM̃ ).

The problem (21) is convex and thus can be solved by standard
convex optimization techniques [60].

The next step at the rth iteration is to test whether the cost
function is smaller for the new unitary matrix eiĤ

(r)
U(r), i.e.,

whether∑
q∈N

∥∥eiĤ(r)

U(r) (ηe/o(AGx))q
∥∥
1
<
∑
q∈N

∥∥U(r) (ηe/o(AGx))q
∥∥
1
.

In the positive case, we actually perform the update of U(r) and
we retain the constraint level ρr for the next iteration:

U(r+1) = eiĤ
(r)

U(r) , ρr+1 = ρr .

Otherwise, we reject the update ofU(r) and reduce the constraint
level ρr:

U(r+1) = U(r) , ρr+1 =
ρr
2

.

By this construction, the cost function sequence∑
q∈N

∥∥U(r) (ηe/o(AGx))q
∥∥
1
, r = 0, 1, . . . is guaranteed to

be monotonically decreasing.
The above iteration process is terminated if ρr falls below

a prescribed threshold or if the number of iterations exceeds a
certain value. The iteration process is initialized by the iden-
tity matrix IM̃ , because the “undeformed” Gabor dictionary is
known to yield relatively sparse analysis coefficients. We note
that efficient algorithms for computing the matrix exponentials
eiĤ

(r)
exist [59].

Finally, we would like to emphasize that if we restrict the min-
imization of (21) to the setHr,d of small Hermitian matrices with
at most d non-vanishing off-diagonals, we obtain a potentially
suboptimal variant of the algorithm with reduced computational
complexity. In some cases, the choice of such a modification will
be mandatory; especially, if we deal with large-scale problems.
We note that we used the convex optimization package CVX [61]
for minimizing (21) in all our simulations. The overall basis
optimization algorithm (including the off-diagonal parameter d
as input) is summarized in Alg. 5.

C. Choosing the Learning Neighborhood N
It remains to address the question, how to select the neighbor-

hood N of the gap, which is needed to specify the (input) training
matrix (ηe/o(AGx))N for Alg. 5. Apparently, N should be as
close as possible to the gap since this increases the likelihood that
the learned dictionary represents the signal part within the gap
sparsely. On the other hand, we have to account for small “guard”
intervals between the gap and training borders, in order to avoid
that unreliable data from the gap influences our training data.

Note that the underlying Gabor structure implies that this guard
interval should be at least of lengthwg (length of Gabor window).
Regarding the neighborhood size we have to rely on intuition
to some extent. A larger neighborhood causes a larger training
matrix (η(AGx))N and, probably, more accurate learning results
but it also increases chances that signal variations occur within
the neighborhood. Such signal variations could yield a dictionary
matched to signal parts which are essentially unrelated to the
signal within the gap. Suppose the signal x ∈ RN has a gap at the
indices n = nB, nB + 1, . . . , nE. Excluding the guard intervals
mentioned above, the neighborhood is given by N = NB ∪ NE

with12

NB = {k : �(nB − wg)/a� − LN ≤ k < �(nB − wg)/a�} ,
NE = {k : �(nE + wg)/a� < k ≤ �(nE + wg)/a�+ LN} ,

i.e., a part before and a part after the gap. Its total length is 2LN .
We will investigate the choice of the length parameter LN via
numerical experiments, see Subsections VI-A and VI-B.

D. Discussion

One might ask, whether the proposed dictionary learning
framework is only suitable to improve A-SPAIN-MOD and
S-SPAIN-MOD or if it can be applied to other sparse inpainting
methods such as (re-)weighted �1-minimization techniques (and
generalizations) [18] as well. This is a topic for future research
but we believe that appropriate adaptations hold also the po-
tential to yield major performance improvements. Moreover, a
closer analysis of the original SPAIN implementation reveals
that the window-based segmentation process in combination
with the overlap-add technique and the redundant DFT dic-
tionary essentially corresponds to implementations of Gabor
analysis and synthesis. Therefore, original SPAIN shares many

12Here, it is assumed that the gap is sufficiently centered within
{0, . . . , (N/a)−1}, so that 0 ≤ �(nB −wg)/a� − LN and �(nE +
wg)/a�+ LN < N/a.
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similarities with SPAIN-MOD although it differs with respect to
the application of the ADMM algorithm. Nevertheless, it seems
to be rather straightforward to apply our dictionary framework
also to the original SPAIN variants. We expect that the main step
is to transform the redundant DFT dictionary using the matrix
V, see (12), (13), and (14), which does not depend on the actual
segment. But note that we are convinced that our suggested
SPAIN-MOD should be used in any case (in Subsection VI-D
it is shown that SPAIN-MOD outperforms the original SPAIN
even without dictionary learning).

VI. SIMULATION RESULTS

Here, we present a numerical assessment of our dictionary
learning technique for sparse audio inpainting. In order to allow
for a valid and comparable evaluation, we consider essentially
the same setup as in [18]. As main performance criterion, we
use the signal-to-distortion ratio (SDR), which is defined as13

SDR(xorig, xinp) = 10 log10
‖xorig‖22

‖xorig − xinp‖22
[dB],

where xorig and xinp denote original and inpainted signal within
the gaps, respectively. Obviously, higher SDR values reflect
superior reconstruction. As in [18], we compute the average
SDR by first calculating the particular values of SDR in dB,
and then taking the average. Furthermore, we also compute the
PEMO-Q measure [62], which includes a model of the human
auditory system. Thus, it is closer to the subjective evaluation
than the SDR. The measured quantity is denoted as objective
difference grade (ODG) and can be interpreted as the degree
of perceptual similarity between original and inpainted signal.
The ODG attains values from 0 (imperceptible) to −4 (very
annoying), thereby, expressing the effect of audio artifacts in
the reconstructed signal.

We use a collection of ten music recordings chosen from
the EBU SQAM dataset [63] and sampled at 44.1 kHz, with
different degrees of sparsity with respect to the original Gabor
dictionary. In each test instance, the input was a signal with 5
gaps at random positions. The lengths of these gaps ranged from
5 ms up to 50 ms. For fixed lengths, the results over all ten signals
containing the 5 gaps were averaged.

Throughout our experiments we used a tight Gabor frame
with the Hann window of length wg = 2800 samples (approx-
imately 64 ms), hop size a = 700 samples, and with M =
2800 modulations. We used the fast implementation of Gabor
transforms provided by the LTFAT toolbox [53], [54] taking into
account its time-frequency conventions. In order to keep the
computational complexity of the basis optimization algorithm
low, we set its maximum number of iterations to rmax = 20, its
off-diagonal parameter tod = 1 (except where noted otherwise),
and its remaining parameters to ρstart = 1 and κ = 2−20. Finally,
all SPAIN variants used the input parameters s = t = 1 and
ε = 0.001.

13Often also denoted as signal-to-noise ratio, see, e.g., [1], [18].

A. Sparsity With Respect to Learned Dictionary

The goal of this subsection is to analyze the sparsity of the
analysis coefficients of real-world audio signals with respect to
the learned frame and to compare it with the analysis coefficients
using the original Gabor frame.

Fig. 1 illustrates the analysis coefficients of the signal
“a60_piano_schubert” from the EBU SQAM dataset [63]. Sub-
figures (a) and (b) depict the signal without gap, (c) and (d)
with gap of length 40 ms. Subfigures (a) and (c) use the Gabor
dictionary, (b) and (d) the learned dictionary. The coefficients
within the green rectangles are used for training, corresponding
to a neighborhood length parameter of LN = 2wg/a = 8. As
expected, the learned dictionary allows for more sparse represen-
tations than the Gabor dictionary. In particular, the learned dic-
tionary also sparsifies the original signal within the gap area even
though the training coefficients are a certain distance apart (from
the gap area). This is also confirmed by a quantitative analysis us-
ing the time-frequency hard-thresholding operator HTF

k applied
to the coefficients X within the blue rectangles of Fig. 1(a) and
1(b), which are relevant for the inpainting performance. More
specifically, Fig. 2 depicts the normalized Froebenius norm of
the k largest coefficients in frequency direction for each time
instant specified by X, i.e., ‖HTF

k (X)‖F
/‖X‖F, for both Gabor

and learned dictionary. It is seen that the same number of k
coefficients in frequency direction contain significantly more
energy for the learned dictionary than for the Gabor dictionary,
or, conversely, fewer coefficients are needed to represent the
signal with prescribed accuracy for the learned dictionary than
for the Gabor dictionary. Since X is chosen according to the
blue rectangles in Fig. 1(a) and 1(b) (and, hence, does not
intersect the learning area framed in green), our assumption that
the sparsifying dictionary does not change too fast over time is
confirmed.

Moreover, we would like to develop an understanding how
the size of the learning neighborhood N around the gap impacts
the sparsity of the learned representation. As an example, Fig. 3
depicts the analysis coefficients of the signal “a25_harp” from
the EBU SQAM dataset [63]. Subfigures (a) and (c) use the
Gabor dictionary, (b) and (d) use learned dictionaries. The
coefficients within the green rectangles are used for training:
subfigure (b) is obtained from training according to (a) and
subfigure (d) is obtained from training according to (c). Note
that the neighborhood length parameter used to obtain (b) was
LN = 4wg/a = 16, whereas the neighborhood length param-
eter used to obtain (d) was LN = 2wg/a = 8. Looking very
carefully it seems that the analysis coefficients with respect
to the dictionary obtained by a larger training set are slightly
more sparse. However, especially within the relevant gap area,
it is almost impossible to notice any differences, so that a more
informative comparison has to be done in terms of inpainting
performance, see the next subsection.

B. Performance Comparison: Training Neighborhood Size
and Learning Complexity

Here, we evaluate how the size of the training neighbor-
hood impacts the inpainting performance. To that end, we
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Fig. 3. Analysis coefficients of signal “a25_harp” without gap. (a) and (c) use Gabor dictionary, (b) and (d) use learned dictionaries based on different training
neighborhoods. The coefficients within the green rectangles are used for training: (b) is obtained from training according to (a) and (d) is obtained from training
according to (c).

considered the same two cases as in the previous subsection,
i.e., the two different neighborhoods with length parameters
LN = 4wg/a = 16 and LN = 2wg/a = 8 and, additionally, a
small neighborhood with LN = wg/a = 4. Furthermore, we
study if additional gains can be achieved by increasing the
learning complexity via the off-diagonal parameter d. Fig. 4
depicts the inpainting results after averaging over all ten signals
with five gaps for the analysis variant A-SPAIN-LEARNED and
the synthesis variant S-SPAIN-LEARNED using off-diagonal
parameters d = 1, 3, 5.

It is seen that the larger off-diagonal parameters d = 3, 5
corresponding to higher computational complexity do not yield
any improvements. Moreover, LN = 8 is superior to LN = 16
and LN = 4 for the majority of gap lengths in terms of SDR
and ODG and this behavior is observed for both analysis and
synthesis variants. It seems that the medium size neighborhood
is a good compromise between benefits of only using learning
coefficients close to the gap and potential disadvantages of small
training sets. It is quite remarkable that a larger off-diagonal
parameter (d = 3, 5) even deteriorates the performance although
one would expect increased sparsity. On the other hand, the
smaller the off-diagonal parameter the smaller the number of
Gabor coefficients which are linearly combined (in frequency
direction) to obtain a learned dictionary coefficient. This im-
plies that the choice d = 1 will not sparsify peaks in frequency
direction to the same extent as it will sparsify the original signal
(which is used for training), see Fig. 1(d), so that the chance
that SPAIN selects an incorrect signal from the feasible set Γx

is reduced.
Based on these insights, we restricted ourselves to the training

neighborhood with length parameter LN = 2wg/a = 8 and the
off-diagonal parameter d = 1 for all further comparisons.

C. Selected Time-Domain Results

Next, we show some example signals obtained by our inpaint-
ing methods. To that end, Fig. 5 depicts the time-domain signals
computed by A-SPAIN-LEARNED and S-SPAIN-LEARNED
to fill a 40 ms gap in the signal “a25_harp.” The original
signal is included for reference. It is seen that both solutions
approximate the original signal quite accurately. In Fig. 6, we
plot the graphs of the learned dictionary atoms in the time
domain. In particular, we show the atoms corresponding to the
first 5 frequency channels obtained by Alg. 5 when applied to the
signal “a25_harp” with a 40 ms gap. For comparison, Fig. 6 also
contains the Gabor atoms corresponding to the first 5 frequency
channels. We can clearly observe differences between the Gabor
and learned dictionary atoms but also shared similarities.

D. Performance Comparison: Different Methods

Finally, we will compare our proposed methods with various
other existing audio inpainting methods. We largely adopted
the simulation settings considered in [18] in order to pro-
vide a consistent evaluation. At this point we would like to
thank the authors of [18] for their reproducible research pol-
icy, which eased this task significantly. Besides our methods
[A-SPAIN-MOD, S-SPAIN-MOD, A-SPAIN-LEARNED, S-
SPAIN-LEARNED], we used the following audio inpainting
techniques (the abbreviations in the rectangular brackets are used
in Fig. 7):
� The original SPAIN algorithm introduced in [17] using a

frame-wise DFT dictionary with redundancy 4. We consid-
ered both analysis variant [A-SPAIN] and synthesis variant
with hard thresholding [S-SPAIN H].
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Fig. 4. Comparison of audio inpainting performance using A-SPAIN-LEARNED and S-SPAIN-LEARNED for three different sizes of the training neighborhood
and for off-diagonal parameters d = 1, 3, 5. (a) and (c) depict results in terms of SDR, (b) and (d) in terms of ODG values.

Fig. 5. Audio inpainting results obtained by A-SPAIN-LEARNED and S-
SPAIN-LEARNED for signal “a25_harp” with gap of length 40 ms. Original
time-domain signal as well as inpainted signals are shown within gap range.

� The frame-wise Janssen algorithm [5] with autoregressive
model order p = min(3H + 2, wg/3), where H denotes
the number of missing/unreliable samples within the

current frame (window), and the number of iterations was
set to 50 [JANSSEN].

� The weighted Douglas-Rachford algorithm [18], i.e., syn-
thesis model �1-minimization with �2-norm-based weight-
ing [DR].

� The weighted Chambolle-Pock algorithm [18], i.e., analy-
sis model �1-minimization with �2-norm-based weighting
[CP].

� The weighted Chambolle-Pock algorithm, i.e., analysis
model �1-minimization with energy-based weighting, in-
cluding time-domain compensation [18] for energy loss
(number of artificial gaps: 4, number of segments: 10,
segment length: quarter of gap length, shift parameter:
wg/2) [TDC].

Fig. 7 shows the inpainting performance of the aforemen-
tioned algorithms after averaging over all ten signals with five
gaps. It is seen that in terms of ODG values the proposed methods
A-SPAIN-MOD, S-SPAIN-MOD, A-SPAIN-LEARNED, and
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Fig. 6. Gabor atoms versus learned dictionary atoms. Real and imaginary parts of atoms corresponding to frequency channels m = 0, . . . , 4 are shown. All atom
plots are equally normalized.

Fig. 7. Overall performance comparison of various audio inpainting algorithms. (a) depicts results in terms of SDR, (b) in terms of ODG values.

S-SPAIN-LEARNED outperform all other inpainting methods
essentially over the whole gap length range (5 ms – 50 ms).
Among those four, A-SPAIN-LEARNED, i.e., the analysis vari-
ant with learned dictionary, achieves best performance. We
also observe that A-SPAIN-LEARNED is superior to any other
algorithm in terms of SDR, thus, illustrating the large benefit of a
sparsity-optimized dictionary. Similarly, S-SPAIN-LEARNED
exhibits substantial improvements over S-SPAIN-MOD with
respect to both SDR and ODR performance measures. Note,
however, that these gains come at the expense of increased
computational complexity due to the additional learning step.

Comparing analysis and synthesis model, we observe the
common phenomenon that the analysis variants outperform the

corresponding synthesis variants in terms of inpainting perfor-
mance (with and without dictionary learning). It appears that the
advantage of a sparsely synthesized original signal according
to the synthesis model is outweighed by the fact that also
more incorrect signals from the feasible set Γx can be sparsely
synthesized.

VII. SOFTWARE AND REPRODUCIBLE RESEARCH

The MATLAB codes needed for the experiments, all the data
and supplemental figures are available at http://oeaw.ac.at/isf/
dictlearnaudioinpaint.

http://oeaw.ac.at/isf/dictlearnaudioinpaint
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VIII. CONCLUSION

We introduced a dictionary learning framework for audio
inpainting. Our proposed method learns the dictionary from
reliable parts around the gap such that a signal representation
with increased sparsity is obtained. To that end, we developed a
basis optimization technique to deform a given Gabor frame such
that the sparsity of the analysis coefficients of the resulting frame
is maximized. Since the optimization procedure is tailored to
generate unitary matrices, “nice” properties of the Gabor frame
(e.g., tightness or painless property) are preserved and are also
present in the learned frame. This is important, since we used the
analysis operator of the deformed frame as the sparsifying trans-
form in a modified SPAIN algorithm, which benefits from such
properties. This modified SPAIN algorithm replaces the conven-
tional hard-thresholding operator by a specific time-frequency
hard-thresholding operator, so that the segment-wise processing
of the original SPAIN algorithm can be avoided.

The experimental results demonstrated that the devised dic-
tionary learning approach yields large performance gains in
combination with the modified analysis SPAIN variant and
significantly outperforms any other inpainting method compared
with. The required additional computational complexity for
learning is, however, not negligible, so that implementations
with reduced complexity are a topic for future investigations.
In particular, dictionary learning implementations that avoid
the replacement of the the �∞-component of the �0,∞-norm
by a summation would be desirable, see also Remarks 2 and
3. While the CVX toolbox [61] allowed us to demonstrate the
feasibility of our approach, other toolboxes (like, e.g., the
UNLocBoX [64]) and/or direct C/C++ coding are probably
more adequate choices in this regard. Moreover, a suitable
adaptation of the ADMM algorithm for solving the dictionary
learning step by �0,∞-minimization (see Remark 2) seems to be
a promising approach for follow-up research.

We also note that the presented dictionary learning framework
seems to be applicable to other sparsity-based inpainting tech-
niques apart from SPAIN as well. We expect that careful combi-
nations with, e.g., (re-)weighted �1-minimization methods will
also increase their performance. Finally, we would like to em-
phasize that our approach is general in the sense that one could
replace the Gabor frame by any other frame (e.g., non-stationary
Gabor frames [44]) satisfying the painless condition as long as
a certain rectangular time-frequency structure is available. This
leaves considerable room for further improvements.

APPENDIX

A. Simplification of y-Update (7b)

The fact that the y-update (7b) is equivalent to applying the
inverse DGT using the canonical dual window to

η†
(
B(i+1)

)
− r(i)

and then projecting it onto the set of feasible solutions Γx is an
immediate consequence of the following theorem.

Theorem 1: Let A : CN → CP and S : CN → CN denote
analysis and frame operator of a frame satisfying the painless
condition (2), respectively, and let Γx = {y ∈ RN : MRy =

MRx}. Then, for any z ∈ CP ,

arg miny∈Γx
‖Ay − z‖2 = arg miny∈Γx

∥∥y −D cdz
∥∥
2
,

where D cd = (AS−1)H denotes the synthesis operator of the
canonical dual frame [35].

Proof: According to (2), AHA = S with diagonal S.
The diagonal elements of S are strictly positive. Clearly,
(AS−1/2)H(AS−1/2) = S−1/2AHAS−1/2 = IN , where S−1/2 is
the diagonal N ×N matrix, whose diagonal elements are the
reciprocals of the (positive) square roots of the diagonal elements
of S. Therefore

AS−1/2 = U

[
IN

0(P−N)×N

]
VH,

withU ∈ CP×P andV ∈ CN×N unitary, represents the singular
value decomposition (SVD) of AS−1/2 [59]. Furthermore, let
Ũ ∈ CP×P denote the unitary matrix that is obtained from U
by multiplying the first N columns with VH and leaving the
remaining columns unchanged, i.e.,

Ũ = U

[
VH 0N×(P−N)

0(P−N)×N I(P−N)

]
.

Then,

AS−1/2 = Ũ

[
IN

0(P−N)×N

]
,

so that

A = Ũ

[
S1/2

0(P−N)×N

]
. (22)

Therefore,

ŷ = arg miny∈Γx
‖Ay − z‖22

= arg miny∈Γx

∥∥∥∥Ũ [
S1/2

0(P−N)×N

]
y − z

∥∥∥∥2
2

= arg miny∈Γx

∥∥∥∥[ S1/2

0(P−N)×N

]
y − ŨHz

∥∥∥∥2
2

= arg miny∈Γx

∥∥∥S1/2y − ŨH
topz

∥∥∥2
2
,

where ŨH
top is the submatrix of ŨH consisting of its first N rows.

Here, the last step follows from the observation that the arg min
operation does not depend on the bottom block (corresponding
to the remaining P−N rows).

Now, note that any y ∈ Γx can be uniquely decomposed into
a part ygap ∈ RN supported on the gap and the reliable part MRx
supported on the complement of the gap according toy = ygap +
MRx. Since S1/2 is diagonal and any y ∈ Γx is real-valued, this
implies that

ŷn =

{
(MRx)n , n outside gap(

Re
(
S−1/2ŨH

topz
))

n
, otherwise

. (23)

Finally, we have

S−1/2ŨH
top =

[
S−1/2 0N×(P−N)

]
ŨH

=

(
Ũ

[
S−1/2

0(P−N)×N

])H

= (AS−1)H,
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see (22) for the last step, which – together with (23) – proves
the claim. �

B. Approximation of B-Update (9a)

We aim at justifying that for any v ∈ RN ,

arg minB:‖B‖0,∞≤k

∥∥D η† (B)− v
∥∥
2

≈ HTF
k

(
η
(
Acdv

))
,

where D : CP → CN denotes the synthesis operator of a frame
and Acd = DHS−1 is the analysis operator of its canonical dual
frame [35]. Since DAcd = IN , we have∥∥D η† (B)− v

∥∥2
2
=

∥∥D η† (B)−DAcdv
∥∥2
2

=
∥∥D (

η† (B)−Acdv
)∥∥2

2

≤ Kupper

∥∥η† (B)−Acdv
∥∥2
2
, (24)

where Kupper is an upper frame bound [35] of the given frame.
The upper bound (24) is minimized for B̂ = HTF

k (η(Acdv)), so
that we expect ‖D η†(B̂)− v‖22 to be sufficiently close to the
true minimum minB:‖B‖0,∞≤k ‖D η†(B)− v‖2.
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