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We investigate a quantum-circuit analog of the dynamical Casimir effect discussed in cavity quantum
electrodynamics (QED). A double superconducting quantum interference device (SQUID), consisting of a
superconducting loop interrupted by a dc-SQUID, is regarded as a harmonic oscillator with a time-dependent
frequency imitating the nonadiabatic boundaries in a cavity QED. Squeezing occurs due to parametric processes
inherent in the system. We reformulate squeezing based on the Bogoliubov transformation between eigenstates
at different times and derive the analytic formula for quantum-state evolutions of the system. The squeezing
parameter clearly reveals the relationship between squeezing and nonadiabatic nature of the system. Thus, the
squeezing parameter serves as a measure for the dynamical Casimir effect. We demonstrate squeezing for two
types of frequency modulation and propose a method for measuring squeezing by using a circuit QED technique
under coherent oscillations between an artificial atom and an LC circuit in the presence of dissipation. These
observations suggest that a quantum circuit with a Josephson junction is a promising candidate for detecting the
dynamical Casimir effect.
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I. INTRODUCTION

In classical mechanics, a vacuum is an empty space,
whereas, in quantum field theory, the vacuum is not truly
empty but instead contains virtual particles that are created and
annihilated from the vacuum due to fluctuations in the zero-
point energy or the vacuum energy. Casimir revealed the zero-
point fluctuations by predicting an attractive force between
uncharged metallic plates in a vacuum.1 This was confirmed
experimentally by Lamoreaux and Mohideen et al..2,3

The dynamical counterpart of the Casimir effect (the
dynamical Casimir effect) is also a key problem in terms
of exploiting the nature of vacuum fluctuations of electro-
magnetic fields in the time domain. Moore predicted that
real photons could be created from the vacuum fluctuations
in an electromagnetic resonator with moving boundaries4

[see Fig. 1(a)]. However, the effect has not been verified
experimentally mainly due to the difficulty in moving the
mirror at a fast-enough speed to generate photons.

Yablonovich proposed a new approach for realizing moving
boundaries without moving mirrors.5 The idea is based on
the rapid changes of the refractive index in a semiconductor
cavity through conductance modulations due to electron-hole
pairs generated by optical pulse irradiation. However, the extra
charges from the electron-hole pairs also lead to undesirable
dissipation, resulting in small refractive index changes. This
makes the observation difficult.

The idea was expanded in other systems such as the
Bose-Einstein condensation of atoms,6 plasmons,7 and su-
perconducting devices.8,9 In particular, a superconducting
quantum circuit is a promising candidate for a system to
designed imitate the dynamical Casimir effect based on an
analog between the Josephson junction and a quantum resonant
cavity, pointed out first by Dodonov et al..10–14 Both systems
can be modeled as harmonic oscillators with time-dependent

frequencies [see Fig. 1(b)]. Such time-dependent harmonic
oscillators (TDHOs)15–18 exhibit parametric amplification due
to the temporal modification of a system parameter.19 The
parametric amplification differs from usual amplification
caused by an actual force acting on the system. In other
words, it is impossible to excite a TDHO initially when
it is at rest in classical regime. In contrast, the TDHO in
quantum-mechanical regimes cannot be at rest because of
zero-point fluctuations, which are purely quantum-mechanical
effect that are capable of exciting the system. Therefore, the
dynamical Casimir effect can be regarded as the parametric
amplification of zero-point fluctuations of electromagnetic
fields in the cavity.

Using the same idea, we have proposed a concrete system
for creating a TDHO using superconducting quantum circuits,
including Josephson junctions. We regard our proposed system
as an artificial atom with a tunable frequency as well as
strong coupling to electromagnetic fields. This allows us to
achieve the rapid change in the system frequency required
for producing a nonadiabatic boundary effect of the order of
several tens of picoseconds with the rapid single flux quantum
(RSFQ) technique.20 In addition, strong coupling facilitates
the detection of the effect. Furthermore, the Josephson system
operates at sufficiently low temperatures and then suppress the
generation of the photons by the parametric amplification of
the thermal noise.

In our previous article,21,22 we demonstrated numerically
squeezed-state generation as a result of the quantum-state
evolution of the system under nonadiabatic processes only
for specific parameters. In this article, we investigate the
nonadiabatic processes in the TDHO system for a wide
parameter range and analytically formulate the quantum-state
evolution of the TDHO system to elucidate the mechanism of
squeezed-state generation caused by nonadiabatic processes.
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FIG. 1. (a) The moving boundary and two-level atom for detect-
ing the dynamical Casimir effect. (b) The time-dependent harmonic
potential. (c) Schematics of a double SQUID. (d) Potential energy of a
double SQUID and its dynamical motion. The potential is normalized
by the Josephson energy EJ = h̄I0/2e.

We also provide a more effective and practical way of
nonadiabatic biasing for demonstrating the dynamical Casimir
effect.

II. JOSEPHSON ARTIFICIAL ATOMS

The system we consider here consists of a superconducting
loop with an inductance L interrupted by a dc superconducting
quantum interference device (SQUID) with capacitance C

(double SQUID)23,24 shown in Fig. 1(c). �̂ and �e represent
the magnetic flux threading the large and small loops,
respectively.

The double SQUID behaves as an rf-SQUID with a tunable
Josephson critical current because the dc-SQUID can be
regarded as a single Josephson junction with a variable
critical current Ic(t) = I0 cos [2π�e(t)/�0] with I0 and �0,
respectively, being the Josephson critical current and the
flux quantum defined as �0 = h/2e. The elementary charge
and Planck’s constant are denoted as e and h, respectively.
Figure 1(d) shows the potential profile as a function of �̂ at
various Ic(t) values. The motion of the magnetic flux �̂ is
described by a particle in the potential

Û (�̂,t) = h̄Ic(t)

2e

(
1 − cos 2π

�̂

�0

)
+ �̂2

2L
. (1)

This potential is expanded up to fourth order on �̂,

Û (�̂,t) � 1

2L

[
1 +

(
2π

LIc(t)

�0

)]
�̂2 − Ic(t)π3

3�3
0

�̂4. (2)

This system is considered to be a harmonic oscillator with
a time-dependent frequency when the fourth-order term is
negligible. This frequency ω(t) can be controlled by the
external flux bias �e, ranging from 0 to 363 GHz for the
typical junction parameters, C = 0.5 pF, I0 = 20 μA, and
L = 200 pH.25

Note that there is a lower bound for this frequency, even if
it could be ω(t) � 0 in principle, since the fourth-order term in
Eq. (2) becomes appreciable compared with the second-order
term when the frequency is small. As a result, the harmonic
approximation breaks down for such a small frequency. The

lower bound is determined as follows. The ratio of the fourth
to the second-order terms in Eq. (2) is given as

Ic(t)π3�̂4/
(
3�3

0

)
Cω(t)2�̂2/2

= 2π3

3

LJ (t)Ic(t)

�0

(
�̂

�0

)2

, (3)

where LJ (t) = 1/[Cω(t)2] is the effective inductance of the
double SQUID. This ratio depends on �̂ as expected. Here
we evaluate this ratio at classical turning points given as �c =
[(2n + 1)h̄/Cω(t)]1/2:

2π3

3

LJ (t)Ic(t)

�0

(
�̂

�0

)2

= 2π

3

LJ (t)Ic(t)

�0

EC

h̄ω(t)

(
n + 1

2

)
,

(4)

where EC = (2e)2/2C is a charging energy corresponding
to a single Cooper pair. The ratio of the fourth order to the
second order at n = 10 is only a few percentage points when
ω(t)/2π = 10 GHz. Therefore, the double SQUID can be
regarded as a TDHO to at least n = 10. The nonlinear effect
will be discussed elsewhere.

Now let us define the annihilation and creation operators at
time t = 0 as

â =
√

Cω0

2h̄
�̂ + i

√
1

2h̄Cω0
Q̂, (5)

â† =
√

Cω0

2h̄
�̂ − i

√
1

2h̄Cω0
Q̂, (6)

where ω0 = ω(t = 0) is an initial frequency and Q̂ is an
electric charge on the junction capacitor. By using â and â†,
the Hamiltonian at time t is written as

Ĥ (t) = h̄ω0

4

( [(
ω(t)

ω0

)2

+ 1

]
(â†â + ââ†)

+
{[

ω(t)

ω0

]2

− 1

}
(â†2 + â2)

)
. (7)

This is diagonalized as

Ĥ (t) = h̄ω(t)

2
[b̂†(t)b̂(t) + b̂(t)b̂†(t)] (8)

by using the Bogoliubov transformation,

b̂(t) = V̂ (t)âV̂ †(t), (9)

b̂(t)† = V̂ (t)â†V̂ †(t), (10)

with

V̂ (t) = exp

[
−μ(t)

2
(â2 − â†2)

]
, (11)

μ(t) = −1

2
ln

(
ω(t)

ω0

)
. (12)

The number state |n(t)〉 at time t defined by the snapshot
number operator b̂†(t)b̂(t) is generated by the operator V̂ (t)
from number state |n〉 at time t = 0, i.e., |n(t)〉 = V̂ (t)|n〉.
In other words, the unitary operator V̂ (t) is regarded as a
time-translational operator for the basis and it represents the
fact that the definition of the eigenstate changes over time.
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III. QUANTUM-STATE EVOLUTIONS

Let us consider the time evolution of the state |φ(t)〉, which
is initially prepared in the ground state |0〉. The state |φ(t)〉 at
time t is expressed in terms of the snapshot eigenstates |n(t)〉,
i.e., |φ(t)〉 = ∑

n=0 Cn(t)|n(t)〉, with Cn(t) being the time-
dependent expansion coefficient for n-th snapshot number
state. In this expansion, both the coefficient and basis are
time dependent. To focus on the time evolution of Cn(t) by
excluding the time evolution of the basis, we apply the operator
V̂ †(t) to |φ(t)〉 and define the state |φ̃(t)〉 ≡ V̂ †(t)|φ(t)〉, which
is governed by the Schrödinger equation

ih̄
∂

∂t
|φ̃(t)〉=

[
V̂ †(t)Ĥ (t)V̂ (t) − ih̄V̂ †(t)

∂

∂t
V̂ (t)

]
|φ̃(t)〉

=
[̄
hω(t)

(
â†â + 1

2

)
+i

h̄μ̇(t)

2
(â2−â†2)

]
|φ̃(t)〉

≡{Ĥ0(t) + Ĥna(t)}|φ̃(t)〉 (13)

with

μ̇(t) = −1

2

d

dt

{
ln

[
ω(t)

ω0

]}
= −1

2

ω̇(t)

ω(t)
. (14)

The second term Ĥna(t) on the right-hand side of Eq. (13)
is proportional to ω̇(t)/ω(t), which shows the nonadiabatic
effect that excites the system to even-numbered levels. Thus,
the state |φ̃(t)〉 no longer stays in the ground state when Ĥna(t)
becomes significant. The Hamiltonian Ĥna(t) is equivalent
to the squeezed Hamiltonian in nonlinear quantum optics.26

Therefore, the squeezed-state generation due to nonadiabatic
boundary changes is clear evidence demonstrating the dynam-
ical Casimir effect in Josephson artificial atoms.

IV. NONADIABATIC EFFECT AND SQUEEZING

To investigate the effect of Hna(t), we move to the
interaction picture, |φ̃(t)〉 = U0(t)|φ̃(t)〉int with U0(t) =
exp [− i

h̄

∫ t

0 Ĥ0(t ′)dt ′]. The time evolution of |φ̃(t)〉int due to
the nonadiabatic effect is governed by the equation

ih̄
∂

∂t
|φ̃(t)〉int = Ĥ int

na (t)|φ̃(t)〉int, (15)

with

Ĥ int
na(t) = Û

†
0 (t)Ĥna(t)Û0(t)

= i
h̄μ̇(t)

2
[â2e−2i

∫ t

0 ω(t ′)dt ′ − H.c.]. (16)

Here H.c. is the Hermitian conjugate of the terms in parenthe-
ses. The formal solution of this equation is expressed by

|φ̃(t)〉int = T̂ exp

[
− i

h̄

∫ t

0
Ĥ int

na (t ′)dt ′
]
|0〉

≡ Û (t)|0〉, (17)

where T̂ is a time-ordering operator and U (t) is an exact
time evolution operator. However, it is difficult to obtain an
analytical solution for Eq. (15) because the Hamiltonian cannot
commute itself at different times. Hereafter, we consider the

situation where[
Ĥ int

na (t),Ĥ int
na (t ′)

]
= ih̄2μ̇(t)μ̇(t ′) sin

[∫ t

t ′
ω(t ′′)dt ′′

]
(â†â + ââ†).

� 0. (18)

This appears to be appropriate with both adiabatic and
nonadiabatic limits. For an adiabatic situation, Eq. (18) is
satisfied due to the small μ̇(t) from the definition. While in
a nonadiabatic case, μ̇(t) is localized in the time domain due
to quick frequency changes. The product μ̇(t)μ̇(t ′) in Eq. (18)
becomes small when t and t ′ are temporally distant. On
the other hand, sin [

∫ t

t ′ ω(t ′′)dt ′′] becomes small when t � t ′.
Thus, these make the commutation relation on Hamiltonian in
different times commutative.

Under the above conditions, we obtain an approximate
solution by omitting the time-ordering operator from Eq. (17),

|φ(t)〉int � exp

[
− i

h̄

∫ t

0
Ĥ int

na (t ′)dt ′
]
|0〉

= exp

[
1

2

∫ t

0
μ̇(t)[â2e−2i

∫ t

0 ω(t ′)dt ′ − H.c.]dt ′
]
|0〉

≡ Ûapp(t)|0〉, (19)

where Ûapp(t) is an approximate time evolution operator. In this
approximation, a state with time-dependent bases at time t is
obtained by multiplying the operator V̂ (μ) by the approximate
solution |φ̃(t)〉 = Û0(t)|φ̃(t)〉int,

|φ(t)〉 = V̂ (t)Û0(t)|φ̃(t)〉int

= V̂ (t)Û0(t) exp

[
− i

h̄

∫ t

0
Ĥ int

na (t ′)dt ′
]
Û

†
0 (t)Û0|0〉

= V̂ (t) exp

[
− i

h̄

∫ t

0
Û0(t)Ĥ int

na (t ′)Û †
0 (t)dt ′

]

× e− i
2

∫ t

t ′ ω(t ′)dt ′ |0〉
= e− i

2

∫ t

t ′ ω(t ′)dt ′ V̂ (t)

× exp

[
1

2

∫ t

0
μ̇(t ′)[â2e−2i

∫ t ′
t

ω(t ′′)dt ′′ − H.c.]dt ′
]

× V̂ †(t)V̂ (t)|0〉
= e− i

2

∫ t

0 ω(t ′)dt ′e− 1
2 {νb̂(t)2−ν∗b̂†(t)2}|0(t)〉. (20)

Here we use Eqs. (9) and (10) and V̂ (t)|0〉 = |0(t)〉. This
is simply the squeezed vacuum state with the squeezing
parameter

ν(t) =
∫ t

0
μ̇(t ′ − t0)e2i

∫ t ′
t

ω(t ′′)dt ′′dt ′

= 1

2

∫ t

0

ω̇(t ′)
ω(t ′)

e2i
∫ t ′
t

ω(t ′′)dt ′′dt ′. (21)

This is our main result. The nonadiabatic effect ω̇(t ′)/ω(t ′)
is connected to squeezing parameter ν(t). Therefore, the
dynamical counterpart of the Casimir effect can be confirmed
by investigating the squeezing of the quantum flux in the
double SQUID. Interestingly, this is identical to Dodonov’s
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expression27 for the amplitude reflection coefficient for the
effective barrier of the time-dependent pulse potential.

Here we consider our approximation in more detail. The
difference between the approximate time-evolution operator
Eq. (19) and the exact time-evolution operator Eq. (17) is
expressed up to the second order of the Hamiltonian,

Ûapp(t) − Û (t)

= 1

2

(
1

ih̄

)2 ∫ t

0
dt ′

∫ t

t ′
dt ′′

[
Ĥ int

na (t ′),Ĥ int
na (t ′′)

]
. (22)

By operating Û
†
app(t) on both sides of Eq. (22), this reduces to

Û (t)Û †
app(t)

= 1 − 1

2

(
1

ih̄

)2 ∫ t

0
dt ′

∫ t

t ′
dt ′′

[
Ĥ int

na (t ′),Ĥ int
na (t ′′)

]
U †

app(t)

+O
[(

Ĥ int
na

)3]
= exp

{
− 1

2

(
1

ih̄

)2 ∫ t

0
dt ′

∫ t

t ′
dt ′′

[
Ĥ int

na (t ′),Ĥ int
na (t ′′)

]}

+O
[(

Ĥ int
na

)3]
. (23)

Equivalently,

Û (t) = exp

{
− 1

2

(
1

ih̄

)2∫ t

0
dt ′

∫ t

t ′
dt ′′

[
Ĥ int

na (t ′),Ĥ int
na (t ′′)

]}

× Ûapp(t) + O
[(

Ĥ int
na

)3]
= exp

{
i

2

∫ t

0
dt ′

∫ t

t ′
dt ′′μ̇(t)μ̇(t ′) sin

( ∫ t

t ′
ω(t ′′)dt ′′

)

× (â†â + ââ†)

}
Ûapp(t) + O

[(
Ĥ int

na

)3]
, (24)

where we use the commutation relation [Ĥ int
na (t ′),Ĥ int

na (t ′′)]
given as Eq. (18). The correction changes only the phase of
the squeezing parameter. Therefore, the approximate solution
for the squeezing parameter is correct up to the second order
of the Hamiltonian as regards its absolute value.

Let us consider two different types of frequency modu-
lations as concrete examples: (i) the frequency ω(t) mono-
tonically decreases from ω0 to ω1 (single-step frequency
modulation) and (ii) the frequency ω(t) sinusoidally oscillates
in time (sinusoidal frequency modulation).

1. Single-step frequency modulation

As a first simple example, we investigate the quantum-state
evolutions of a flux particle in a double SQUID for a single-step
frequency modulation given as

ω(t − t0) = ω0 + ω1

2
− ω0 − ω1

2
tanh

{
2(t − t0)

τ

}

≡ ω+ − ω− tanh

{
2(t − t0)

τ

}
, (25)

where ω± = (ω0 ± ω1)/2. The hyperbolic tangent is
introduced solely to avoid any numerical divergence in the
calculations. The frequency ω(t) monotonically changes
from ω0 to ω1 in the duration τ as shown in Fig. 2(a). The
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FIG. 2. (a) Temporal profile of ω(t). (b) Temporal profile of
μ̇(t) = −(1/2)[ω̇(t)/ω(t)] (solid line) and −ω̇(t) (dashed line).

corresponding μ̇(t) together with ω̇(t) are also depicted in
Fig. 2(b). We performed numerical calculations using a pro-
cedure described in our previous article.21,22 The numerically
obtained distribution probabilities Pn(t) = |Cn(t)|2 are well
fitted by a super-Poissonian distribution in a squeezed vacuum
state26

Pn(t) = sinhn(|ν(t)|)
2nn! coshn+1(|ν(t)|)Hn(0)2, (26)

where Hn(x) is the nth-degree Hermite polynomial.
Figure 3 shows the absolute values of squeezing parameter

|ν(t)| at t = ∞ as a function of a normalized modulation
rate 1/ω0τ for a sudden frequency change. Our approximate
solutions agree well with numerical results obtained by the
fitting of the distribution of the number states.22 In the
nonadiabatic limit (τ � 1/ω0,1/ω1), the squeezing parameter
approaches an asymptotic value as shown in Fig. 3. This can be
estimated as follows. In the single-step frequency modulation,
μ̇(t ′ − t0) in Eq. (21) is localized as shown in Fig. 2(b). Thus,
the exponent in Eq. (21) can be expanded around t ′ = t0 up to
the first order of (t ′ − t0),

2i

∫ t ′

t

ω(t ′′ − t0)dt ′′

� 2i

∫ t0

t

ω(t ′′ − t0)dt ′′ + 2i(t ′ − t0)ω+

=−2i(t − t0)ω+ + τω−
2

ln [cosh (t − t0)/τ ]+2i(t ′ − t0)ω+.

(27)
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Numerical results
Approximation
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FIG. 3. The squeezing parameter as a function of the modulation
rates for single-step modulation. The dots are numerical solutions and
the solid lines are approximate solutions, Eq. (21).

Under this approximation, the squeezing parameter becomes

ν(t) =
∫ t

0
μ̇(t ′ − t0)e2i

∫ t ′
t

ω(t ′′−t0)dt ′′dt ′

� e2i
∫ t0
t

ω(t ′′−t0)dt ′′
∫ t

0
μ̇(t ′ − t0)e2i(t ′−t0)ω+dt ′

� e2i
∫ t0
t

ω(t ′′−t0)dt ′′

×
∫ t

0
μ̇(t ′−t0)[1+2i(t ′−t0)ω++· · ·]dt ′+O(τω+)

� e2i
∫ t0
t

ω(t ′′−t0)dt ′′

×
[∫ t

0
μ̇(t ′ − t0)dt ′ + iω+μ̇(0)

∫ t0+τ/2

t0

(t ′ − t0)dt ′
]

+O(τω+)

� e2i
∫ t0
t

ω(t ′′−t0)dt ′′
[
μ(t) + iω+

1

τ

ω−
ω+

τ 2

2

]
+ O(τω+)

= e2i
∫ t0
t

ω(t ′′−t0)dt ′′μ(t) + O(τω+). (28)

With the limit of a small τω+, namely the nonadiabatic limit,
the absolute value of the squeezing parameter observed in the
Fig. 3 is given as

|ν(t = ∞)| = |μ(t = ∞)| = 1

2
ln

(
ω0

ω1

)
, (29)

where ω1 = ω(t = ∞).
With the opposite limit(τ 	 1/ω0,1/ω1), the approximate

solution also works well since a small μ̇(t) makes the approx-
imation [Ĥ int

na (t),Ĥ int
na (t ′)] � 0 reasonable. In this situation,

ω(t) � ω+ − 2tω−/τ in Eq. (21). The squeezing parameter
becomes

ν(t) =
∫ t

0
μ̇(t ′ − t0)e2i

∫ t ′
t

ω(t ′′−t0)dt ′′dt ′

� −1

2

∫ t−t0

−t0

ω̇(t ′)
ω(t ′)

e
2i

∫ t ′
t−t0

ω(t ′′)dt ′′
dt ′

� 1

2

∫ t−t0

−t0

2ω−
(

1
τ

)
ω+ − 2t ′ω−

(
1
τ

)e2i[t ′ω+−t ′2ω−( 1
τ )]dt ′

= 1

2

∫ t−t0

−t0

2
(

ω−
ω+

) (
1
τ

)
1−2t ′

(
ω−
ω+

) (
1
τ

)e
−iω− 1

τ

[
t ′−

(
ω+
ω− τ

)]2+ iτω−
2

(
ω+
ω−

)2

dt ′

�
(

ω−
ω+

)
1

τ

∫ t−t0

−t0

e
−2i

ω−
τ

[
t ′− τ

2

(
ω+
ω−

)]2+ iτω−
2

(
ω+
ω−

)2

dt ′

�
(

ω−
ω+

)√
π

2iτω−
e
i

τω−
2

(
ω+
ω−

)2

∝ 1√
τ

, (30)

where we took the limit t0 → ∞. Therefore, squeezing does
not occur in the adiabatic limit τ → ∞.

Let us now estimate the absolute value of the maximum
squeezing parameter using realistic junction parameters. By
using Eq. (29), it becomes 0.89 when we employ ω0/2π =
57 GHz and ω1/2π = 10 GHz with a subpicosecond changing
duration τ , say 0.8 ps,28 which was achieved in recent exper-
iments using femtosecond photoexcitation techniques. In this
case, the product τω+ yields 0.17, which is sufficiently small
for us to ignore O(τω+) in Eq. (28). This squeezing parameter
corresponds to the average excited photon number, which
is calculated from the population distribution of Eq. (26),
〈â†â〉 = sinh2 |ν| = 0.97. Therefore, the nonadiabatic effect
is sufficiently strong to generate one photon in the above
situation.

2. Sinusoidal frequency modulation

The single-step frequency modulation scheme most clearly
uncovers the nonadiabatic effect of the system, but it is
practically ineffective because the entire nonadiabatic effect
is generated solely by a one-time frequency modulation. In
addition, it requires ultrafast system controls. Here we consider
an alternative scheme, i.e., a sinusoidal frequency modulation
given as

ω(t) = ω0 + δω sin ωt, (31)

where δω is the modulation amplitude. This frequency modu-
lation is conventional and the nonadiabatic effect is expected
to be accumulated in periodic cycles.

Figure 4 shows the time evolution of ν(t) with δω/ω0 =
0.04, for example. The squeezing parameter oscillation in-
creases with in time in this sinusoidal frequency modulation.
The increase rate is calculated as follows. By substituting
the sinusoidal ω(t) into Eq. (21), the squeezing parameter is
calculated as

ν(t) = 1

2

∫ t

0

ω̇(t ′)
ω(t ′)

e2i
∫ t ′
t

ω(t ′′)dt ′′dt ′

= 1

2

∞∑
s,p=−∞

csJp

(
2
δω

ω

)
(−i)pe2i δω

ω

∫ t

0
eit[(s+p)ω+2ω0]dt ′

= 1

2

∞∑
s,p=−∞

csJp

(
2
δω

ω

)
(−i)pe2i δω

ω

× sin {t[(s + p)ω + 2ω0]/2}
[(s + p)ω + 2ω0]/2

eit[(s+p)ω+2ω0]/2
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FIG. 4. Time evolution of the squeezing parameter for sinusoidal
change [ω(t) = ω0 + δω sin ωt]. The dots are numerical solutions
and the solid lines correspond to the approximate solution.

= 1

2

∞∑
l,p=−∞

cl−pJp

(
2
δω

ω

)
(−i)pe2i δω

ω

× sin [t(lω + 2ω0)/2]

(lω + 2ω0)/2
eit(lω+2ω0)/2. (32)

Here we use the Fourier expansion for ω̇(t)/ω(t) as

ω̇(t)

ω(t)
= δωω cos ωt

ω0 + δω sin ωt
=

∞∑
s=−∞

cse
isωt , (33)

where the Fourier components are given as

cs =
⎧⎨
⎩

iω(−ia)s for s > 0
0 for s = 0
−iω(ia)−s for s < 0

(34)

and are roughly proportional to the modulation amplitude δω

from the definition of the parameter a,

a =
(

δω
ω0

)
1 +

√
1 −

(
δω
ω0

)2
< 1. (35)

The rotating phase term, exp [2i
∫ t

0 ω(t ′)dt ′], is also expanded
as

exp

[
2i

∫ t

0
ω(t ′)dt ′

]

=
∞∑

p=−∞
Jp

(
2
δω

ω

)
(−i)peipωt e−2i(ω0t− δω

ω ), (36)

where Jp(x) is the pth-order Bessel function.
The last sine term in Eq. (32) represents an energy

conservation rule lω + 2ω0 = 0 and increases linearly with
time when the modulation frequency ω satisfies nω = 2ω0

with n being an integer, i.e., lω + 2ω0 = ω(l + n) = 0 for
l = −n. Otherwise, the sine term oscillates at any l except
l = −n, resulting in no squeezing. The squeezing parameter

can be divided into a t-linear term νlin(t) for l = −n and an
oscillating term δν(t) for any l except l = −n,

ν(t) = 1

2

∞∑
l,p=−∞

cl−pJp

(
2
δω

ω

)
(−i)pe2i δω

ω

× sin [t(lω + 2ω0)/2]

(lω + 2ω0)/2
eit(lω+2ω0)/2

= 1

2

∞∑
p=−∞

c−n−pJp

(
2
δω

ω

)
(−i)pe2i δω

ω × t

+1

2

∞∑
p=−∞,l �=−n

cl−pJp

(
2
δω

ω

)
(−i)pe2i δω

ω

× sin [t(lω + 2ω0)/2]

(lω + 2ω0)/2
eit(lω+2ω0)/2

= νlin(t) + δν(t), (37)

where the t-linear term is written as

νlin(t) = t

2
e2i δω

ω

∞∑
p=−∞

[
c−n−pJp

(
2
δω

ω

)
(−i)p

]
. (38)

By substituting Eqs. (34) and (36) into Eq. (38), the squeezing
rate is analytically obtained as

νlin(t)

t
= 1

2
e2i δω

ω

∞∑
p=−∞

c−n−pJp

(
2
δω

ω

)
(−i)p

= 1

2
e2i δω

ω

[ ∞∑
p=−n+1

(−iω)(ia)p+n(−i)pJp

(
2
δω

ω

)

+
−n−1∑
p=−∞

(iω)(−ia)−p−n(−i)pJp

(
2
δω

ω

)]

= 1

2i
e2i δω

ω ω(−i)n

×
∞∑

r=1

(−a)r
[
Jn−r

(
2
δω

ω

)
− Jn+r

(
2
δω

ω

)]

� 1

2i
e2i δω

ω ω(−i)n

×a

[
Jn−1

(
2
δω

ω

)
− Jn+1

(
2
δω

ω

) ]
+ O(a2)

= 1

2i
e2i δω

ω ω(−i)naJ ′
n

(
2
δω

ω

)
+ O(a2), (39)

where J ′
s (x) denotes [dJs(x)/dx]. Equation (39) has the

largest value at n = 1 corresponding to ω = 2ω0 for other
conditions (n > 1) since the differential of the Bessel func-
tion J ′

s (2δω/ω0) has smaller values as higher orders for a
small modulation amplitude (δω/ω0) � 1, i.e., J ′

0(2δω/ω0) >

J ′
1(2δω/ω0) > J ′

2(2δω/ω0) > · · ·. Thus, the largest squeezing
occurs at ω = 2ω0 as shown in Fig. 5.

Note that the resonance we discussed here differs from
that of a Rabi oscillation under external alternating fields. An
elementary process in Rabi oscillations is essentially a one-
photon process together with atomic excitation and relaxation
due to the linear coupling between the external field and the
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FIG. 5. Squeezing rate |νlin(t)|/ω0t as a function of modulation
amplitude δω/ω0. The black circles, white circles, and black triangles
denote numerical results. The solid, dashed, and dotted-dashed lines
shows approximate solutions for the time evolution operator.

system described as the Jaynes-Cummings model. Thus, all
of the system states of the system are possibly excited. On
the other hand, nonadiabatic excitations caused by frequency
modulation are regarded as parametric amplifications. This
is due to two-photon generation and absorption as shown in
Eq. (13). Therefore, the resultant states, i.e., squeezed vacuum
states, are excited only in even numbered states.

Let us estimate the elapsed time needed for generating
at least the single photon required for observations. The
increase rate of the squeezing parameter |νlin(t)|/t at ω = 2ω0

is roughly |νlin(t)|/t = 0.020ω0 from numerical evaluations
of Eq. (32) at δω = 0.8 GHz and ω = 40 GHz. So it is
|νlin(t)|/t = 0.40 GHz at ω0 = 20 GHz. The photon num-
ber in a squeezed state is evaluated as 〈â†â〉 = sinh2 |ν|.
The squeezing parameter corresponding to the 〈â†â〉 = 1 is
then |ν| = sinh−1 1 = 0.88. The elapsed time required for
|νlin(t)| = 0.88 is a few nanoseconds, for example, 2.2 ns.
Recent experiments on quantum circuits with similar circuit
parameters support a decoherence time ranging from a few
nanoseconds to microseconds. Thus, squeezing grows quickly
enough to allow us to detect a photon. As a result, detectable
photon generation is also possible in this sinusoidal frequency
modulation scheme.

V. MEASUREMENT SCHEME

Let us discuss a detection scheme for squeezed vacuum
states generated in a double SQUID. Here we employ the
method used in circuit QED experiments29,30 where, for
example, Fock and coherent states in quantum circuits are
detected via coupling with a two-state system known as a qubit
in quantum information technology.31 The detection system
forms the Jaynes-Cummings model well known in quantum
optics. Squeezed vacuum states obtained via the nonadiabatic
effect may be detected in a similar experimental scheme to
that shown in Fig. 1 (c). The basic idea of this scheme is
the quantum-state transfer of a double SQUID into a qubit
based on the state-dependent coupling between them peculiar
to the Jaynes-Cummings model. Thus, the double SQUID

states superimposed in the qubit are analyzed by Fourier
transformation.

Below, we analyze the detection scheme in more detail. The
quantum state of the double SQUID after nonadiabatic time
evolution with an elapsed time t is expressed as

∑
n Cn(t)|n(t)〉

by using the snapshot number state |n(t)〉 and the expansion
coefficient for the nth snapshot number state. The population
distribution Pn(t) = |Cn(t)|2 should be the super-Poissonian
distribution in squeezed vacuum states, which is given as
Eq. (26).

The qubit is initially prepared at the lower level |g〉, and
then the qubit and double SQUID are tuned into resonance for
an adjustable interaction duration τ ′. The coupling between the
qubit and double SQUID is described by the Jaynes-Cummings
Hamiltonian as follows:

ĤJC = h̄
[b̂(t)σ̂+ + σ̂−b̂†(t)]. (40)

Here σ̂+ and σ̂− are the qubit raising and lowering operators,
respectively. The Rabi frequency is denoted as 
. The
quantum-state evolution of the double SQUID and the qubit in
Schrödinger picture is described by the total Hamiltonian

Ĥtotal = Ĥs(t) + Ĥqubit + ĤJC, (41)

where Ĥs(t) is the double SQUID Hamiltonian in Eq. (8). The
qubit Hamiltonian is Ĥqubit = h̄ωσ̂z/2, where the Pauli matrix
σ̂z is represented in qubit eigenstates basis |e〉 and |g〉. The state
of the double SQUID and the qubit under the Hamiltonian (41)
after time τ ′ is shown as

|φ(τ ′)〉 = exp

(
−i

Ĥtotal

h̄
τ ′

)
|g〉 ⊗

∑
n

Cn(t)|n(t)〉

=
∑

n

Cn(t)
[
e−i(n− 1

2 )ω(t)τ ′
cos

√
n
τ ′|g〉 ⊗ |n(t)〉

− iei(n− 1
2 )ω(t)τ ′

sin
√

n
τ ′|e〉 ⊗ |(n − 1)(t)〉].
(42)

The probability Pe(τ ′) of finding the qubit in the excited state
|e〉 is given as

Pe(τ ′) =
∑

n

|{〈e| ⊗ 〈n(t)|}|φ(τ ′)〉|2

=
∑

n

|Cn(t)|2 sin2 

√

nτ ′

=
∑

n

Pn(t)
1 − cos(2

√
n
τ ′)

2
. (43)

This includes different Fourier components with amplitude
Pn(t) and frequency 2

√
n
. The population Pn(t) is then

obtained by the Fourier transformation of Pe(τ ′),

P̃e(ω′) = 1

T

∫ T

0
dτ ′Pe(τ ′) cos ω′τ ′

= 1

2

∑
n

Pn(t)

[
1

2

sin(2
√

n
 + ω′)T
(2

√
n
 + ω′)T

+ 1

2

sin(2
√

n
 − ω′)T
(2

√
n
 − ω′)T

+ sin ω′T
ω′T

]
, (44)
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where T denotes the measuring time. Equation (44) is
composed of the functions sin[(x − a)T ]/(x − a)T . These
functions have a peak with height of 1 and width of 2π/T at
x = a. Therefore, the first and second terms in Eq. (44) have
peaks at ω′ = ±2


√
n with a height of Pn(t)/4. The third

term has a peak with a height of P0(t)/2 at ω′ = 0. Therefore,
the population probability Pn(t) is measured from the height
of each peak.

Note that there is a lower bound for the measuring time used
to distinguish each peak because the distance between adjacent
peaks 2
(

√
n + 1 − √

n) becomes increasingly narrow at
higher energy levels and each peak has a finite width of 2π/T .
Thus the nth peak overlaps the adjacent (n + 1)th peak when
2π/T > 2
(

√
n + 1 − √

n). Thus, the lower bound for the
measuring time is

T >
π


(
√

n + 1 − √
n)

. (45)

A longer measuring time is required for detecting higher
energy peaks, for example, 
T > 20 for n = 10.

Decoherence in the coherent motion of probability densities
between the qubit and the double SQUID modifies the
above relations. We phenomenologically introduce dissipa-
tion by replacing Eq. (43) with Pe(τ ′)e−γ τ ′

with γ being
the phenomenological decay rate. The Fourier spectrum of
Pe(τ ′)e−γ τ ′

is given as

P̃e(ω′,γ ) = 1

2
e−γ T

∑
n

Pn(t)

×
(

1

2{[2√
n
T + (ω′T )]2 + (γ T )2}

× {[2√
n
T + (ω′T )] sin[2

√
n
T + (ω′T )]

− (γ T ) cos[2
√

n
T + (ω′T )] + (γ T )eγT }
+ 1

2{[2√
n
T − (ω′T )]2 + (γ T )2}

× {[2√
n
T − (ω′T )] sin[2

√
n
T − (ω′T )]

− (γ T ) cos[2
√

n
T + (ω′T )] + (γ T )eγT }

+ (ω′T ) sin ω′T − (γ T ) cos ω′T + (γ T )eγT

(ω′T )2 + (γ T )2

)
.

(46)

In general, dissipation broadens the peak width associated with
the term

e−γ T (x sin x − γ T cos x) + γ T

x2 + (γ T )2
, (47)

indicating a peak at x = 0 with height (1 − e−γ T )/γ T . The
peak width is determined by

e−γ T (x sin x − γ T cos x) + γ T = 0. (48)

With weak dissipation γ T � 0, the deviation δ from the
nondissipative width π is expected to be small. In fact, Eq. (48)
is reduced to

−πδ + γ T + γ T eγT = 0.

The extra broadening due to dissipation is then δ � γ T (1 +
eγT )/π . The deviation δ is 0.22 � π when 1/γ = 2.5 μs32

and T = 1.25 μs, i.e., γ T = 0.3. Therefore, Eq. (45) is still
applicable with weak dissipation. On the other hand, the
measuring time T should be much shorter than the decoherence
time 1/γ because the peak height is suppressed by the factor
e−γ T . This determines the upper bound of the measuring time.

By taking account of the upper and lower bounds Eq. (45),
the measuring time for the nth level with dissipation is given
as

1

γ
	 T >

(π




) 1√
n + 1 − √

n
. (49)

From this restriction, the measuring time T should be 2.5μs 	
T > 0.5μs with the current experimental parameters. Figure 6
shows the Fourier spectrum for Rabi oscillations between a
qubit and a double SQUID. The dotted and solid lines in
Fig. 6 denote the Fourier spectrum without dissipation (γ = 0)
and with dissipation γ /
 = 1/(2.5μs × 0.04 GHz) = 0.01,
respectively. Even with dissipation, significant distribution
properties such as even-numbered occupation can be clearly
found from the spectrum.

Note that the dynamical Casimir effect is the amplification
of the quantum fluctuation in the ground state due to the
nonadiabatic boundary effect. Thus, to remove any form of
uncontrollable noise sources, including thermal noises that are
naturally occurring in the proposed design circuit, a low-noise
amplifier33 and/or low temperature systems should be required.
Therefore, a quantum-circuit analog of the dynamical Casimir
effect can be established in a double SQUID by detecting
the super-Poissonian distribution peculiar to squeezing that
originates from the nonadiabatic boundary effect.

Finally, it is worth mentioning the direct observation
of squeezing in detecting the reduced fluctuation of one
of conjugate observables, i.e., magnetic flux � threading
in the large loop of our double SQUID system, by ho-
modyne detection scheme. The fluctuation � is roughly
estimated as � = exp[−|μ|]�0 = 0.42�0 when the
squeezing parameter |μ| is 0.87 given by single-step frequency
modulation from ω0 = 59 (GHz) to ω1 = 10 (GHz). Here
�0 denotes the ground-state flux fluctuation, typically

0
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FIG. 6. Fourier spectra of P̃e(τ ′) with the dissipation given by
Eq. (46). The solid and dotted lines denote the Fourier spectrum
with dissipation (γ /
 = 0.01) and without dissipation (γ /
 = 0),
respectively. The white circles denote the population distribution
Pn(t)/4 for squeezing parameter |ν(t)| = 1. For comparison, the
distribution of the coherent state with same average photon number is
denoted by the black circles. The odd-numbered excitations peculiar
to squeezed states enable us to identify the dynamical Casimir effect.
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�0 = 7.8 × 10−18 (Wb) in our junction parameter C =
15 (pF). All these can be made possible with the use of the
innovative technology. Further details will be discussed in later
articles.

VI. CONCLUSION

We have investigated the nonstationary properties of a
quantum flux in a double SQUID system regarded as an analog
of an electrically neutral cavity with a moving boundary in
a vacuum. We have formulated quantum-state evolutions of
the double SQUID states based on the Bogoliubov transfor-
mation between eigenstates at different times. As a result,
squeezed states of the quantum flux in the double SQUID
are produced as a result of the nonadiabatic effect. The
analytic formula, Eq. (21), and numerical results show that the
squeezing parameter can measure the nonstationary aspect of
the quantum flux in the double SQUID. In addition, the super-
Poissonian distribution peculiar to squeezing with a significant
characteristic such as an even-numbered population is superior
to conventional single-photon detection techniques in terms of
measuring nonadiabatic effects. We have demonstrated that
both sudden and sinusoidal frequency modulations produce
sufficiently strong nonadiabatic effects. Thus, a nonstationary
boundary effect can be implemented in a circuit QED system.
In other words, Josephson quantum circuits are suitable for

exploring the dynamical properties of quantum systems due
to the high quantum coherence and rapid controllability with
low dissipation.

In addition, we showed that the dynamical effect can
be formulated with a Hamiltonian similar to the interaction
Hamiltonian of photons with a nonlinear optical crystal in
quantum optics. The analogy of the Hamiltonians of the two
systems suggests that a double SQUID behaving like a time-
dependent harmonic oscillator can be regarded as a nonlinear
optical material with a tunable nonlinear optical susceptibility.
The nonlinear property is used to provide a coupler between
the quantum bits34,35 in quantum information technology.
Controllable susceptibility is a preferable characteristic for
couplers in quantum information technology. Therefore, the
present results indicate that the double SQUID has the potential
for quantum information applications.
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