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Abstract

We illustrate various methods for implementing experiments that split particles into three beams, using
ªtrittersº, or use three coherent particles (GHZ states), in order to illustrate our belief that any experi-
ment that can be done using two particles is more interesting with three partricles.

Introduction

There have been various schemes recently proposed to create three-particle superpositions
as entangled or GHZ states [1]. One obvious use of them would be to implement the GHZ
theorem [2], which would go beyond two-particle Bell theorems. But it would seem that
there should be other uses for such superpositions. Our basic position is that there are
things that can be done with three-particle states that cannot be done with two-particle
states, and that anything you can do with two-particle states can be done more interestingly
with three-particle states. In this report, we shall illustrate with a few examples.

Beam Splitters and Tritters

A beam splitter has two input beams and two output beams, copnnected by a unitary trans-
formation. The simplest case is shown in Fig. 1. Here we have

jai ! 1���
2
p �jdi � i jci� ;

(1)

jbi ! 1���
2
p �jci � i jdi� :
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We can also write this as
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The three beam extension of this is called a ªtritterº (the general n-beam case is called a
ªcritterº). One can construct any finite unitary matrix from a combination of critters, mir-
rors, and phase shifters [3]. The critter itself is constructed of beam splitters, mirrors, and
phase shifters.

The tritter is shown in Fig. 2a. A simple case where the ports have equal amplitudes can
be constructed from the cube roots of unity, as shown in Fig. 2b. These roots, 1, l, m, have
the following properties:

l � e2pi=3 ; m � e4pi=3 ;

13 � l3 � m3 � 1 ;

(3)
l2 � m ; m2 � l ; lm � 1 ;

1� l� m � 0 :

The tritter has the properties:

jai ! 1���
3
p �jdi � jei � j f i� ;

jbi ! 1���
3
p �jdi � l jei � m j f i� ;

jci ! 1���
3
p �jdi � m jei � l j f i� ;

(4)

R � 1���
3
p

1 1 1
1 l m
1 m l

0@ 1A ; RRy � 1 :
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Fig. 1: A simple Beam Splitter. The input ports are a and b, and the out-
put ports are c and d.

Fig. 2: The Tritter. (a) A simple tritter. The
input ports are a, b, and c, and the output
ports are d, e, and f . They are related by a
unitary transformation. (b) the cube roots
of unity in the complex plane, labeled, l, l,
and m.



If one has an interferometer of two beam splitters, as in Fig. 3a, then

jbi ! i jei ;
(5)jai ! i j f i ;

so that it is in a sense ªdiagonalº. The same is true for our tritter. If one has an interferom-
eter like that shown in Fig. 3b, then

jai ! jgi ; jbi ! jki ; jci ! jhi : �6�
Notice here that there is a slight interchange, in that jbi ! jki, rather than jbi ! jhi.

Two Particle and Three-Particle Systems

One can use beam-splitters and tritters to construct two-particle and three-particle interfer-
ence systems. The two-particle case is shown in Fig. 4, where

w � 1���
2
p �jai ja0i � jbi jb0i� ! 1���

2
p �jai ja0i eia � jbi jb0i�

! i eia=2���
2
p �jci jd0i � jdi jc0i� cos

a

2
� �jci jc0i ÿ jdi jd0i� sin

a

2

� �
: �7�

The three-particle case, assuming that the source S is in a GHZ state, is shown in Fig. 5. In
this case, one has

w � 1���
3
p �jai ja0i ja00i � jbi jb0i jb00i � jci jc0i jc00i� : �8�
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Fig. 3: Multiport Interferometers. (a) Two
beam splitters are needed for two input ports.
Beam a emerges at f , and beam b at e. (b)
Two tritters are needed for three input ports.
Beam a emerges at g, beam b at k, and beam
c at h (note the inversion).



Each of the photons passes through its respective tritter, so that

jai ! 1���
3
p �jdi � jei � j f i� ;

(9)

ja0i ! 1���
3
p �jd0i � je0i � j f 0i� ;

etc:

There are three phase shifters present, in the beams a, b, and c. At the output, one counts
coincidences between the three photons. There are 27 possible sets of coincidences between
them, one unprimed, one single-primed, and one double-primed, e.g. dd0d00, dd0e00, ef 0d00,
etc. However, just as the two-particle case simplified, so that the 4 possible output probabil-
ities each reduced to one of the functions cos2 a=2, sin2 a=2, so too in the three particle
case the output probability of each coincidence set reduces to one of three possible func-
tions.
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Fig. 4: A two-entangled-particle Interferometer. A phase shifter a is placed in one of the
beams. Interference is seen by counting coincidences between the two particles (primed and
unprimed). No individual counter will see any interference effects.

Fig. 5: A Three-entangled-particle Inter-
ferometer. Three phase shifters a, b, and
g, are placed in the system. Interference
is seen by counting coincidences be-
tween all three particles. Individual parti-
cles and pairs of particles will show no
interference.



These functions are

f0�a;b;g� � 1

27
jeia � eib � eigj2 ;

f1�a;b;g� � 1

27
jeia � leib � meigj2 � f0�a;b� 2p=3; gÿ 2p=3� ;

(10)

f2�a;b;g� � 1

27
jeia � meib � leigj2 � f0�a;bÿ 2p=3; g� 2p=3� ;

j f0j2 � j f1j2 � j f2j2 � 1

9
:

How can one tell which coincidence output goes with which function? In Fig. 5, we have
given a number to each output,

d � d0 � d00 � 0 ; e � e0 � e00 � 1 ; f � f 0 � f 00 � 2 : �11�

Then, to find the probability for the output of any coincidence set, one just adds the three
numbers, mod 3, and the sum gives the correct function fi. For example,

Pdd0d00 � f0�0�0 � f0 ;

Pde0f 00 � f0�1�2 � f0 �mod 3� � f0 ;
(12)

Pef 0f 00 � f1�2�2 � f2 �mod 3� � f2 ;

etc:

The function f0 is given by

f0 � 1

27
jeia � eib � eigj2

� 1

27
3� 2 cos

aÿ b

2
� 2 cos

bÿ g

2
� 2 cos

gÿ a

2

� �
� 1

27
1� 8 cos

aÿ b

2
cos

bÿ g

2
cos

gÿ a

2

� �
: �13�

It is a function of two variables, x � aÿ b, y � bÿ g, and one can write it

f0�x; y� � 1

27
1� 8 cos

x

2
cos

y

2
cos

x � y

2

� �
;

f0�0; 0� � f0�0; 2p� � f0�2p; 0� � f0�2p; 2p� � 1

3
;

(14)
f0�2p=3; 2p=3� � f0�4p=3; 4p=3� � 0 ;

f0�x;p� � f0�p; y� � 1

27
:

It is periodic in both x and y with a period of 2p.
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In three-particle interference experiments, one can see from eq. (13), that if any two of the
angles, say b and g differ by p, then the function f0 becomes constant, independent of the
other angle a. Thus one of the beams can be used to monitor the other two, and to determine
whether they can interfere or not. This is not possible with two-particle interference.

How a Tritter Can Be Better Than a Beam-Splitter

We will point out a sample situation where a tritter can replace a beam-splitter and perform
a better job. But since there are three beams within a tritter, there are obviously many
circumstances where one can choose either one path, which will destroy coherence, or the
other two as a group, which will then not fully destroy coherence. There are many possibi-
lities, of which ours is merely the simplest.

We will examine the case of the Vaidman-Elitzur bomb [4], merely replacing the ªbombº
by an absorber, so that if the photon strikes the absorber, it will have a 100% chance of
being absorbed (no explosion!). The original situation is shown in Fig. 6a. There may be
an absorber in the beam c at A, and the problem is to determine by passing one photon
through the system, without having the beam absorbed by the absorber, whether the absor-
ber is there or not.

Classically the problem is insoluble. Quantum mechanically, if the absorber is missing,
the wave function of a photon sent into the system at a will evolve as

jai ! 1���
2
p �jbi � i jci� ! 1

2
��jdi � i jei� � i�jei � i jdi�� � i jei : �15�

Thus, the photon will never show up in the detector at d. But if the absorber is present, the
photon will evolve as

jai ! 1���
2
p �jbi � i jci� ! 1���

2
p �jbi � i jAi� ! 1

2
�jdi � i jei�

� �
� 1���

2
p jAi : �16�
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Fig. 6: Detecting a Particle Without Interact-
ing With It. (a) The two-particle version has
an absorber at A, whose presence can be de-
tectable by counting a photon at d that en-
tered the system at a, and that has never in-
teracted with it. (b) The three-particle
version. The absorber at A can be detected
by counting a photon at h that entered the
system in a specified way through ports a
and b.



Here, the state jAi denotes that the photon has been absorbed at A. Therefore, there is a
50% chance that the photon will be absorbed, a 25% chance that it will show up at the
detector at e, and now a 25% chance that it will show up at the detector at d. Since if the
absorber were absent, it would never show up at d, this means that whenever the counter d
clicks, the absorber must have been present in the system. If it is present, half the time the
photon will not get through. But if it does get through, then half the time it will be detect-
able by the clicking of counter d. In these cases, we will have detected the presence of an
absorber in the system, without having ever interacted with the absorber! This is an amaz-
ing demonstration of the non-locality of quantum mechanics.

However, the statistics can be improved using instead a tritter. In Fig. 6b, if the absorber
is absent from beam f , then from eq. (6) one sees that an initial wafe function
jwi � 1��

2
p �jai � l jbi� will evolve into

jwi � 1���
2
p �jai � l jbi� ! 1���

2
p �jgi � l jki� : �17�

In this case, the photon will never exit the system so as to be counted by a detector at
beam h. But when the absorber A is present, the wave function will evolve so that

jwi � 1���
2
p �jai � l jbi� ! 1���

6
p ��jdi � jei � j f i� � l�jdi � l jei � m jf i��

! 1���
6
p �ÿm jdi ÿ l jei � 2 jAi�

! 1�����
18
p �jgi � l jki ÿ 2m jhi� � 2���

6
p jAi : �18�

We see here that there is a greater probability of losing the original photon to the absor-
ber, which will happen with of the time. But now, when the photon remains, it will hit the
detector at h 67% of the time, which it never did when the absorber was absent. So the
non-classical aspect of the experiment is enhanced to 67%, rather than 50%, when a tritter
replaces the beam-splitter. With higher n-beam critters, this percentage would be enhanced
even more. These experiments can also be improved by combining them with Zeno para-
dox devices, as was done for the beam-splitter [5].

How Three Particles Can Be Better Than Two

We have claimed that anything you can do with two particles will be more interesting with
three particles. We will illustrate with the example of quantum teleportation [6]. Actually,
teleportation is performed with a three-particle system, but one of these particles is the
passive incident state, while the active transformation is carried out by the other two parti-
cles. We shall see how three active particles can lead to more interesting results.

First we review the case with two particles. The procedure is outlined in Fig. 7. One
starts with a particle, which we will assume is spin 1/2, in an arbitrary state,

w1 � a"1 �b#1 ; �19�

where the subscript represents particle 1, the original particle, which is to be teleported
from A to B. Between them, a source emits particles 2 and 3 in an entangled state j23

1 (see
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eq. (20)), and when particle 2 reaches A, a joint measurement is made between particles 1
and 2, to place them in a Bell state, j12

i. Here the subscript represents particles 1 and 2,
while the superscript represents one of the four Bell states,

j1 � 1���
2
p �"" � ##� ;

j2 � 1���
2
p �"" ÿ ##� ;

(20)

j3 � 1���
2
p �"# � #"� ;

j4 � 1���
2
p �"# ÿ #"� :

This measurement yields one of the Bell states. The amplitudes for the various outcomes are

Y tot � w1j23
1 � �a"1 � b#1�

1���
2
p �"2"3 � #2#3�

� 1���
2
p �a"1"2"3 � a"1#2#3 � b #1"2"3 � b#1#2#3�

� 1

2
�a�j12

1 � j12
2� "3 � a�j12

3 � j12
4� #3

� b�j12
3 ÿ j12

4� "3 � b�j12
1 ÿ j12

2� #3�

� 1

2
�j12

1�a"3 � b#3� � j12
2�a"3 ÿ b#3�

� j12
3�a#3 � b"3� � j12

4�a#3 ÿ b"3��

� 1

2
�j12

1R1w3 � j12
2R2w3 � j12

3R3w3 � j12
4R4w3� : �21�

As can be seen from eq. (21), the measurement that puts particles 1 and 2 in a Bell state
also puts particle 3 into a state that is either the original state w, or a state that is connected
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Fig. 7: Quantum Teleportation. The telepor-
tation takes place through a five step pro-
cess: (1) a particle in an unknown original
state is located at A; (2) an entangled pair
of particles is sent from a source to A and
B; (3) a measurement is made at A to deter-
mine in which Bell state the pair of parti-
cles is located; (4) this information is com-
municated to B by classical means; (5) the
experimenter at B then uses this information
to manipulate his particle so that it ends up
in the state of the original particle at A.



to it by some simple rotation and/or inversion. In eq. (21), we see that a measurement of
the state ji reduces the state of particle 3 to this unique state. For example, if the measure-
ment shows that particles 1 and 2 are in the state j3, then the state of particle 3 differs
from that of w by " and # having been interchanged, so that the transformation R3 is just
the inversion operator I.

The next stage of the teleportation is that the experimenter at B must be told the result of
the Bell measurement at A. This step is done by a classical communication, perhaps over
the telephone. (It is this step that prevents the teleportation from being carried out super-
luminally.) Once B knows the result of the measurement at A, he knows what transforma-
tion he must perform on particle 3 to convert it to the state w, namely the inverse transfor-
mation Rÿ1

i , which does not depend on either a or b. The end result is that the state w has
been transferred from particle 1 to particle 3, without the particle having been sent, even
though this state may be unknown to all parties involved.

We will now describe the same event in the case when there are three particles involved
in the EPR source emission. In this case we take the emission state arbitrarily to be
F234 � 1��

2
p �"2"3"4 � #2#3#4�. Then

Y tot � w1F234 � 1���
2
p �a"1 � b#1� �"2"3"4 � #2#3#4�

� 1

2
�j12

1�a "3"4 � b#3#4� � j12
2�a "3"4 ÿ b#3#4�

� j12
3�a #3#4 � b"3"4� � j12

4�a #3#4 ÿ b"3"4�� : �22�

Now, when the Bell state for particles 1 and 2 is measured, one can use the result to trans-
port the state w to either particle 3 or partricle 4. This is the additional feature introduced
by the extra particle. One has the choice of where to teleport the result.

We shall demonstrate how this feature is exploited. Say one wants to teleport the result
to particle 4. Then one measures particle 3 along the x-direction. The spin up and down
states along the z-direction can be expressed in terms of those along the x-direction by

" � 1���
2
p � � !� ;

(23)

# � 1���
2
p � ÿ !� ;

where  represents the state j� xi, and ! represents the state jÿ xi. Then, if the result of
the Bell measurement on particles 1 and 2 was j12

1, one has

1

2
���
2
p j12

1�a� 3 � !3� "4 � b� 3 ÿ !3� #4

� 1

2
���
2
p j12

1� 3 �a"4 � b#4� � !3 �a"4 ÿ b#4�

� 1

2
���
2
p j12

1� 3 R1 w4 � !3 R1!w4� : �24�

So now both the experimenters at particles 2 and 3 must communicate with the one at 4 by
a classical transmission. Partricle 2's says the Bell measurement yielded j1, while parti-
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cle 3's says that the x measurement yielded  . Then the experimenter at 4 knows that he
must apply the inverse transformation �R1 �ÿ1 to his particle in order to obtain w for
particle 4. Similarly, if one wanted to teleport to particle 3, one would have to measure
along the x-direction at particle 4 and transmit the result to particle 3. The procedure is
identical, because of the symmetry between the two particles.

We believe the results we have presented represent merely the first steps in using 3-particle
entangled states, and that there are many fascinating effects there that have not been
dreamed of yet. This work was supported in part by the NSF, grant #PHY-97-22614.
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