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We separate the two-dimensional Schrodinger equation in a spatially sinusoidal potential
and find a series of orthogonal base states, all of the same energy, consisting of a Mathieu
function in one Cartesian axis and a characteristic exponential in the other. Superpositions
of these base states can rigorously satisfy boundary conditions when the medium has a sharp
edge illuminated by perfect-Bragg radiation. The new states hold even when the potential
peaks are higher than the transverse energy of the particle and hence extend existing weak-
potential solutions of dynamical diffraction theory. The new states are applicable to current
experiments with atoms in standing light and they reduce to the dynamical diffraction states
when the potential is weak..

1 Introduction

When an atom moves through a standing light wave, it experiences a spatially-
sinusoidal and time-independent potential due to the interaction of the atom’s
electric dipole with the electric field of the light. If the direction of the atom’s
motion is appropriate, Bragg diffraction will occur.!” The situation is similar to
that of a neutron moving through a perfect crystal, where, at least to lowest orders
in a Fourier expansion, the potential can also be described as a simple sinusoid.
There already exist well-developed theoretical treatments of neutron diffraction in
crystals (dynamical diffraction theory*®) and the wavefunctions developed in these
treatments can be used to describe some cases of atom diffraction in standing light.
Some, but not all cases. As we shall see below, an important dimensionless
parameter in the Schrodinger theory of Bragg diffraction is g - the ratio of the
heights of the peaks of the sinusoidal potential to the transverse kinetic energy of
the particle, i.e. the kinetic energy in the direction perpendicular to the periodic
lattice. For neutrons Bragg diffracting in crystals, ¢ is of the order of 107 and
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consequently the base states in dynamical diffraction theory are derived under the
assumption that g « 1. However for an atom Bragg diffracting in standing light, g
can easily exceed 1 or 10 or more with ordinary laboratory light intensities and
hence the existing base states, valid only for ¢ « 1, do not apply. The purpose of
this paper is to derive Schrodinger base states applicable to g values order of 1, 10,
or larger.

” L medium
spacing d *l

lcntmncc surface J

Figure 1  The coordinates, the position of the medium and its entrance surface
2= 0, and the orientation and spacing d of the planes of the periodic potential.

Fig. 1 sets the stage for the discussion. The plane z = 0 is the entrance surface
of the medium; the region z < 0 has zero potential, the region z > 0 is the periodic
medium with a potential given by

V(x)=V, +2V cosGx . '¢))

Here the x-axis is along the entrance surface, G = 2x/d with d the spacing of the
potential peaks and V; and V| are constants. Thus the surfaces of constant potential
are planes perpendicular to both the plane of the figure and the entrance surface, i.e.
a situation called Laue-case in crystal diffraction. In addition to satisfying
Schrodinger’s eq. within the potential of Eq. 1, the wavefunctions we seek must
also satisfy boundary conditions at the entrance surface. We will assume that the
incident particle has mass m and energy E, and that the incident wavefunction is
simply a plane wave whose wavevector has magnitude %, lies on the x-z plane, and
has a negative x-component -G/2. The z-component of the incident wavevector is
then



286

N | =

I 0

In short, the plane-wave illumination in Fig. 1 is from the lower right at the Bragg
angle.
Since V; and V, are zero for z <0 and constants for z > 0, the medium has an

abrupt or sharp edge. To describe a gentle or soft edged medium one would have to
let V, and V, be functions of z. We will not consider soft edges here.

2 Background

As background for the large g wavefunctions, let us recall the two small g

wavefunctions, ¥*and W™, used as base states in dynamical diffraction.*s These
each have the factored form

o
Wt (2, 0) = pt(x)e 2

Ze—iEt/ h , 3)

but, as indicated, their x-axis wavefunctions, l,(l+ (x) and ¥~ (x), and their z-axis
wavenumbers, K: and K, are distinct. Specifically, the states, normalized over
one potential period d, are

' 1
v (x) = (%)2(eicx/2i e—ti/Z) : @

and their z-axis wavenumbers are

K; = [k2 - (?—)(% £V)- (—gﬂé | ©)

Note that for positive Vyand V; and for V; < V,, both X, and K are less than
the incident k, given by Eq. 2, i.e. the particle must loose z-momentum climbing

into the positive potential medium. Note also that while the y/i (x) wavefunctions
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are each an equal-weight superposition of left and right running Bragg waves,
w'(x) isacosine with maximum probability for the particle to be at the peaks
of the potential of Eq. 1. and ™ (x) is a sine with maximum probability at the
valleys of the.potential. Consequently, w*(x) experiences more potential than
v~ (x), which explains why y " (x) is associated with a smaller value of K, than

is ¥ (x).In fact, it has been noted® that the values K: and K, given in Eq. 5
can be derived from the general energy constraint

1 .
£ _[,2 [(ZmY) \x E)ZF
K, —[k (hz )(V) (2 , ©)

where ( V)i is the expectation value of the potential of Eq. 1 for the state y/i (x).

The two complete base states ¥*(x,z,¢) of Eq. 3 are a sufficient basis to
match at the boundary z = 0 any perfect Bragg illumination . of the medium. By
perfect Bragg illumination we mean a plane wave with k,_ either +G/2 or -G/2 or

an arbitrary superposition of both of these plane waves. For example, if the
illumination is the single Bragg plane wave mentioned above which approaches the
entrance surface from the lower right in Fig. 1 with x-momentum —AG/2, then the

resulting wavefunction in the medium is
1 _
W (52,8) = =¥  (x,2,1) = ¥ (x,2,1)] , 7
total Ji[ ]

the minus sign removing the unwanted right-going waves at z = 0 and thereby
matching the incident left goiﬁg wave. Because of the different values of K : and

K, , a beating effect occurs with increasing depth z in the medium so that, even
though the particle definitely had negative x-momentum at z = 0 , it will definitely

have positive x-momentum at a depth A given by

A=2x(K; - K}) . ®

will return to negative x-motion at twice A, etc. The depth A is known as the
pendelosung length and the oscillations of the direction of propogation are known as
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pendel6sung oscillations. Fig. 2 shows the probability distribution of the total state
over two potential periods in the x-direction, i.e. there is a potential peak at the
center of the horizontal axis and one at each edge of the Fig., and over three
pendelosung depths A in the z-direction (A= 625 of the arbitrary vertical units).
Note that as the particle enters at z = 0 going left, the intensity is uniform across
the entrance surface, then it piles up on the left side of each channel atz = A/2, and
then it is uniform again at depth A. But now the the particle is propogating to the
- upper right, i.e. it has been turned by Bragg diffraction.

The base states W™ out of which the total state of Eq. 7 is constructed are
clearly not exact solutions of Schrodinger’s eq. in the potential of Eq. 1, but, as we
shall see, they are approximate solutions when the potential V, is small compared
to the x-axis kinetic energy #>(G/2)*/(2m). For use below let us introduce the
dimensionless ratio of these energies as the parameter g,

_smy,
9="7 7
,hG

)
3 From Schriodinger To Mathieu

To find base wavefunctions for large g, con31der the two- dlmensmnal Schrodinger
equation in the potential of Eq 1,

ih

ov R a* )\ '
+ ¥Y-V.¥ -2V cos(Gx)¥ = 0. 10)
ot [ax &:2J 0  cos(Gx) (

We seek factored base states just as in Eq. 3, i.e.

iK,z -—1Et/h

¥(x,2,6) = y(x) ¢ (11

except that for large g, w(x) and K, are no longer given by Eqs. 4 and 5 and, as we
shall see, more than two base states will be needed at large g. Insertion of Eq. 11

into Eq. 10 and introduction of a dlmenswnless coordinate, Gx/2—x, leads to the
equation :
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Figure 2 Probability density of the small g state of Eq. 7. The horizontal x-
axis spans two lattice periods 4, the vertical z-axis spans three pendelosung
lengths A.
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2

d
};1’—2’-+(a—2qcos2x)y/=o (12)

for the x-axis wavefunction,where the new dimensionless parameter, a, is defined as

4 [(2
a:-ai-[(—;;—f—)(E—%)—Kg] . (13)

Eq. 12 is the standard form of Mathieu’s equation and its solutions are known as
Mathieu functions.*?

In the next section we consider integer order Mathieu functions since they are
the states needed to develop wavefunctions generated by perfect-Bragg illumination.
Before considering these functions let us first emphasize the wave-mechanical
significance of the Mathieu parameter a. Consider a periodic Schrodinger
probability amplitude ¥ that obeys the Mathieu Equation. Multiply Eq. 12 by

v and integrate over whatever period has been chosen for normalization, say 7.

(Note that in the dimensionless coordinate, the period of the potential is 7 ; the
base state functions in the next section are all periodic over either & or 2z, but
their squares are periodic over 7 , like the potential.) Use the normalization and
solve for a to obtain

n « n *d2w
a=2¢[y" cos2nyydr~ [y —-dx . (14)
0 0 dx

- The first term is the expectation value of the sinusoidal part of the potential and the
second term ( including the minus) is the expectation value of the kinetic energy in
the x-direction, both terms in a dimensionless format. Eq. 14 implies that any

specific periodic y that obeys Eq. 12 must be accompanied by a specific or
characteristic value of the parameter @. And since K, is the only free parameter in
the Eq. 13 defining a, (G, E, and V, are assumed given and fixed), each specific
solution will also be associated with a specific value of K. In short, the detail
shape of an x-axis state will fix the the associated z-axis momentum, the same
behavior seen earlier in Eq. 6 for the small g base states. Equating Egs. 13 and 14
and solving for K,, one obtains the generalization of Eq. 6 for base states of
arbitrary gq.
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4 Mathieu Functions of Integer Order

For each positive integer, n, there exist two integer-order Mathieu functions®? —
the even one denoted ce_(x,q) and the odd one denoted se (x,q). Each is real and
has period either & or 27. The even [odd] one ce (x,q) [se, (x,q)] can be
expanded as a Fourier cosine [sine] expansion with real coefficients and with the lead
term being cosnx [sinnx]. There is also a single zeroth order function ce,(x,q)
that is even and periodic and has lead Fourier terms of a constant followed by cos2x.
In all the Fourier expansions of integer Mathieu functions only alternate terms
appear, €.8. cosx, cos3x, cosSx, etc. in ce;. The shape,of each functmn and hence its
Fourier coefficients depend on the value of q.

For sufficiently small g, the Fourier coefficients can be expressed as power
series in g. For ce,; and se, these are®’

» ¢ 4 a @& &\ .
Ce,(x,4)=(1‘-'—"——~*—+---)cosx-(—-+-—-—~- )C053x+...’

128 512 8 64 3072
. - ~ (15)
¢ @ ¢ @ 7 | |
se;(x,q) = l——— 42— [sinx ~ | == —~ sin3x+---
128 512 8 64 3072

To zeroth order in g, ce, is cosx and se, is sinx and hence we recover the dynamical
diffraction states l;/t(x) of Eq. 4, but here unnormalized.
. As anticipated in the previous section, each integer-order Mathieu function is a
solution of the Mathieu equation 12 only if the parameter a has the appropriate
characteristic value. The characteristic value for each specific type of function is g
dependent. S
For sufficiently small g, the charactenstlc values can be expressed as a power
series in g. For ce, and se, these are®”, respectively,

2 3
q q
a=1l+q———-—++-+ , (16)
8 o4 '
and
2 3
q

IS (R S an
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To first order in g, when Eq. 13 for a and Eq. 9 for ¢ are inserted in Eq. 16, the
expression of Eq. 6 for K: is recovered. Similarly, Eq. 17 to first order in g yields

the value of K, . Thus the complete theory of dynamical diffraction at perfect
Bragg conditions is contained in two Mathieu functions to zeroth order in g and in
their characteristic values to first order in g.

For large g values the Fourier coefficients and the characteristic values cannot
be determined from power series in g, such as in Eqgs. 15, 16, and 17, and hence
other techniques must be used. Suitable techniques were described in detail by
McLachlan® and are available on Mathematica. Fig. 3 shows the characteristic |
values as a function of g for the first few integer-order Mathieu functions. Figs. 4,
5,6 and 7 show graphs of these functions for several values of g. '

Several features may be noted. First, at zero g the characteristic value for both
the even and the odd function of order n is n?. This is because, with no potential,
the characteristic value is just the x-axis kinetic energy and, since only the lead term
in the functions, i.e. cosnx or sinnx, is present at g = 0, the (dimensionless) kinetic
energy is just n%. Second, with increasing g, the characteristic value for the odd
function stays below that for the even function of the same order. This is because
the even function “sees” the potential more. Third, with g sufficiently in excess of
1 the characteristic values of ce, and se,, (and of ce, and se,, etc.) asymptotically
converge, indicating that these two functions tend toward the same energy
expectation value. Since at large q the potential energy dominates the kinetic, the
convergence of these characteristic values actually indicates that the two functions
have the same expectation value for the potential, i.e. the squares of the functions
- must have the same shape. The graphs of ce, and se, at g = 24 confirm this, and a
similar convergence can be seen in the pairs of functions in Figs. 5, 6, and 7. For
the higher order pairs, the convergence doesn’t fully develop until larger g values
because of their greater kinetic energies. Fourth, the functions of even order n
=0,2,4,*** have period 7; those of odd order n=1,3,5,*** have period 2z . Fifth, for
all the functions there is a general tendency, with increasing ¢, for the probability
density to be pushed off the potential peaks and into the valleys, i.e. quantum
mechanical channeling. To see this in the graphs, it is important to remember that
the period of the potential is 7, in the dimensionless coordinate, and thus the
domain of the graphs is two periods of the potential, i.e. there is a potential peak at
the center and at each edge of the graph. Finally, as the probability density gets
more localized in the valleys with increasing g, higher order components are required
in the Fourier expansions of the functions.
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Mathieu functions ce; and se,, over two periods of potential.
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Figure 5 Mathieu functions ce, and se,, over two periods of potential.
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Figure 6 Mathieu functions ce, and se,, over two periods of potential.
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Figure 7 Mathieu functions ce, and se,, over two periods of potential.
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5 Total Wavefunctions

For a given g, the set of integer-order Mathieu functions are mutually orthogonal
and form a complete set for expanding any function that shares the periodicity of the
medium. The left-going and perfect-Bragg incident wave considered above in
sections 1 and 2 presents just such a function at the entrance plane of the medium:
its x-dependence in the dimensionless coordinate is simply

——

e " =cosx~isinx. (18)

If the medium beyond the boundary has a Mathieu parameter of value ¢, expand Eq.
18 in integer-order Mathieu functions of that g value. Since Eq. 18 has period
27 the cos x expands in odd order ce, functions and the sin x in odd order se,
functions. Now each Mathieu function in the expansion is linked to a specific
characteristic constant a and hence, via Eq. 13, to a specific z-axis wavenumber K.
Therefore the complete in-medium wavefunction “¥(x,z,f) is obtained by
multiplying each term by the appropriate z-dependent exponential, i.e. each term in
the Mathieu expansion will have the form of Eq. 11 with a different K value for
each term and, of course, the Y(x) in each term is an integer-order Mathieu
function. Note that although each term factors into functions of x only, z only and
t only, the complete wavefunction doesn’t factor, just as in the small g state of Eq.
7. To prepare a factorable in-medium wavefunction, i.e. a single Mathieu function
times a single z-axis exponential, one would need to illuminate the entrance surface
with a coherent superposition of plane waves, exp(tix), exp(+2ix), exp(¥3ix),---,
each with the proper amplitude and phase to build the specific Mathieu function.

The number of terms needed for an accurate Mathieu expansion of Eq. 18
increases with ¢ and hence more coefficients must be calculated. Fortunately,
because of the orthogonality of the Mathieu functions, a table of Fourier
coefficients for various Mathieu functions (available on Mathematica) already
contains the needed coefficients: if the table is arranged such that a row gives
ascending Fourier coefficients for expanding a specific Mathieu function, then the
columns give ascending Mathieu coefficients for expanding various sine and cosine
functions.

Preliminary calculations of total wavefunctions generated by the incident state
of Eq. 18 have been carried out up to g = 24. Even at q = 24 fewer than ten Fourier
terms are required. Beyond g = 1, several new features emerge that are not present in
the state of Eq.7 and the density of Fig. 2. In addition to a reduction of the principle
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pendeldsung period, there are secondary pendelGsung structures of even smaller z-
periodicity and also an increasing localization of the density in the potential
valleys.The reduction of the principle pendeldsung period is because the difference in
the characteristic constants for ce, and se, increases with g (see the a, and b, curves
on Fig. 3). The finer pendel6sung structures are due to beating of the various other
K, values that are now in the wavefunction and the x-localization is due to the

higher x-momenta that are in the Mathieu functions with increasing q.  These
higher x~-momenta imply additional outgoing beams at the exit surface of the

medium and their relative brightness exhibits an interesting dependence on the
thickness of the medium via the K, beating. More details and density displays of

these high-g total wavefunctions will be presented elsewhere.

6 Conclusions and Extensions

The base states presented in section 4 and the total wavefunctions outlined in
section 5 solve the problem posed in the introduction: find the Schrédinger
* wavefunction generated in a medium with a strong sinusoidal potential when the
medium has a sharp boundary and is illuminated by a perfect-Bragg plane wave of
definite energy. The wavefunctions are built by superposition of products of integer-
order Mathieu functions in x and complex exponentials in z with wavenumbers
characteristic of each Mathieu function. Each term in the superposition is a rigorous
solution of the Schridinger equation in the periodic medium and the superposition
rigorously matches the incident plane wave at the boundary. When the potential is
weak the wavefunctions reduce to the familiar perfect-Bragg wavefunctions of
dynamical diffraction theory

Several extensions are called for. First, in current experiments with atoms
impinging on standing light, the incident radiation is not a single perfect-Bragg
plane wave but typically is a mixture of many plane waves whose directions span a
substantial fraction of the mean Bragg angle. Such off-Bragg waves can be handled
via the same techniques as above but one must use fractional-order Mathieu
functions.® These functions have characteristic-value curves that lie in the white
regions of Fig. 3 marked “stable”. Second, the sharp-edged boundary may not apply.
In general, a soft-edged boundary calls for a z-dependent q. Third, if the detuning of
the light is small [or zero], the potential is complex [or imaginary] and hence at
least partially absorbing.? Mathieu functions do exist for complex q.® * Fourth, the
potential can be made time dependent.® Theoretical consideration of these situations
will be presented elsewhere. But it seems clear that in all these extensions products



300

e

of Mathieu functions and characterisitic exponentials in z will play a central role,
since these are the base states in a sinusoidal medium. ‘
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