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Abstract. Bragg diffraction of atoms at thick standing light waves requires that the wave-
matching condition is fulfilled. This usually means that the atomic beam crosses the light wave
exactly at the Bragg angle. Nevertheless, our experiments also demonstrate Bragg diffraction
at detuned angles if theamplitudeof the standing light wave is temporally modulated with
an appropriate frequency. If, on the other hand, thephaseof the light wave is modulated no
diffraction is observed. Both modulation processes produce frequency sidebands which set up
‘slowly travelling standing waves’ in front of a retro-reflection mirror. Atoms are diffracted at
these ‘almost standing’ light waves in a similar way to photons at the travelling sound waves
in an acousto-optic modulator. The frequency of the diffracted de Broglie waves is assumed
to be shifted by the intensity modulation frequency. The different results using amplitude- and
phase-modulated light waves are due to interference between the diffraction contributions of the
individual frequency sidebands contained in the standing light wave.

1. Introduction

Bragg diffraction of an atomic beam at standing light waves was realized for the first time by
Martin et al [1] in 1988. Recently, the velocity and angular selectivity of Bragg scattering
have been investigated experimentally by Giltneret al [2]. The same group realized a Mach–
Zehnder-type atom interferometer with a high fringe contrast [3] using Bragg scattering at
standing light waves as a highly efficient beamsplitting mechanism.

In our paper we report a diffraction experiment in the Bragg regime at a temporally
modulated standing light wave, where for the first time the experimental conditions were
chosen such that the modulation period was much smaller than the interaction time between
the atoms and the light wave. Similar effects were also investigated in neutron diffraction
experiments at vibrating mirrors [4–8]. Related experiments with atoms have been reported
in [9, 10], where reflection of the atoms at a vibrating mirror, consisting of a modulated
evanescent wave, was used to modulate an atomic de Broglie wave in the time domain.
Another experiment employed a travelling evanescent light grating formed by two lasers
with a frequency difference to produce velocity-tuned Doppleron resonances in the diffracted
signal [11]. In contrast to our experiment the interaction time between atoms and light
was much smaller than the modulation period. Other Doppleron experiments also employ
standing waves composed of different frequencies [12–16]. There, the excitation of an atom
into an excited state can be linked to the transfer of many-photon momenta by applying
a correct mixture of light frequencies. Nevertheless, Doppleron transitions change the
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internal state of an atom leading typically from the ground state to an excited state. Bragg
diffraction, on the other hand, does not change the internal state of the atom, which makes
it easy to exclude spontaneous emission by detuning the light frequency far enough from
resonance. In [12] Doppleron and Bragg diffraction are distinguished clearly, and a hybrid
multiphoton process which is closely related to our experiment is described theoretically.
Our experiment is also related to quantum localization experiments by Mooreet al [17],
where atoms caught in a magneto-optical trap interact with amplitude- or phase-modulated
standing light waves in order to transfer multiple resonant kicks to the atoms.

In the following, we will give a short introduction to the differences between matter–
wave diffraction at thin and thick light gratings, and then discuss Bragg scattering at
temporally modulated light fields.

2. Diffraction regimes

Elastic matter–wave scattering at light waves can be separated into two main regimes
distinguished by the length1z of the atom–light interaction region.

Raman–Nath and Bragg diffraction correspond to the diffraction at thin and thick
standing light waves, respectively. In both cases the wave-matching conditionEk′

A = EkA±nEkG

with the requirement|Ek′
A | = |EkA | is fulfilled, corresponding to energy and momentum

conservation. Here,EkA andEk′
A are the wavevectors of the original and the diffracted atomic

de Broglie waves,EkG is the grating vector of the light intensity grating, andn is an integer
which corresponds to the diffraction order. In the case of a standing wave formed by two
exactly counterpropagating light waves with wavevectors±EkL, the grating vector can be
expressed asEkG = 2EkL. In this case, the wave-matching condition can be fulfilled only at
special angles of incidenceθn given by the Bragg equation:

sinθn = nkL/kA . (1)

Atoms incident at other angles just pass the light wave without being diffracted.
The difference between Raman–Nath and Bragg diffraction regimes can be attributed

to a different angular distribution of the light wavevectorsEkL. By confining the light to the
finite size of the interaction region1z, an angular uncertainty for the photon momentum of
18 = 1kL/kL > 1/(21zkL) results [12] due to the uncertainty principle1zh̄1kL > h̄/2.
Therefore the wave-matching condition can be fulfilled in the angular range18 around the
central Bragg angle. If18 is larger than the diffraction angle, then the angular selectivity
is lost, corresponding to the case of Raman–Nath diffraction. The inverse case is obtained
if

1z >
kA

2nk2
L

(2)

and corresponds to the Bragg diffraction regime.
An additional condition for sharply defined Bragg diffraction is that the interaction

strength between the light grating and the atoms has to be small enough that no significant
scattered wave amplitude arises before travelling at least a distance1z given by equation (2)
in the light crystal. Practically, this condition requires that the potential seen by the atoms
(∼h̄ωRabi, whereωRabi is the intensity and frequency-detuning dependent Rabi frequency
of the electronic transition [18]) is much lower than the photon recoil energy ¯h2k2

L/(2m).
Thus, the additional condition for Bragg scattering is

h̄2k2
L/(2m) � h̄ωRabi . (3)
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The inverse case would give rise to several diffracted beams simultaneously and to a
loss of the angular selectivity [19, 20]. A detailed comparison of the diffraction regimes is
given in [21].

3. Photon versus matter–wave Bragg diffraction

A different point of view based on real space instead of momentum space is usually applied
in conventional optics, for Bragg diffraction of photons at thick gratings, holograms or
crystals. Here, the critical parameter is the number of grating planes, which are crossed by
any of the diffracted or undiffracted beams on their paths through the crystal. If less than
one grating plane is crossed, the grating can be treated as two-dimensional. The far-field
diffraction properties of such a thin grating are determined by Fourier transforming the
transfer function of the grating, which is thus treated as a spatial amplitude and phase filter
[22]. This cannot work if more than one grating plane is crossed, because a simple spatial
filter would lose its position-dependent variation due to averaging. Instead, in this case a
diffracted wave inside the crystal has to be taken into consideration from the beginning,
resulting in a coupling of diffracted and undiffracted waves. Such a picture is applied in
dynamical diffraction theories for matter and light waves [18, 19, 23].

The situation is sketched in figure 1. A standing light intensity grating with a period of
dG = 2π/kG is formed by retro-reflection of a plane light wave with a wavevectorkL = kG/2
at an adjustable mirror (the lines parallel to the mirror surface indicate the intensity maxima
of the standing light wave). In first order the grating constant is independent from a small
tilt angle of the mirror with respect to the perpendicular direction. The grating planes are
always parallel to the mirror surface. Therefore, a change of the mirror angle translates into
an equal change of the angle between the atomic beam and the light grating. If this angle
corresponds to the Bragg angleθB then the atomic beam is coherently split and diffracted

Figure 1. Geometry of a Bragg diffraction experiment, where the angle between the incident
atomic beam and the standing light wave can be varied at an adjustable mirror. The standing
wave is set up by retro-reflection of a plane light wave incident almost perpendicular to the
mirror and to the atomic beam direction. Planes of constant light intensity within the standing
intensity grating are indicated by the thin lines. They are always parallel to the mirror surface.
The grating constant of the standing wave isdG = λL/2 whereλL is the light wavelength.
The length,1z, of the light crystal corresponds to the spot size of the plane light wave on the
retro-reflection mirror. If the mirror angle corresponds to the Bragg angleθB, then diffraction
into one diffraction order is observed. The number,N , of grating planes which are traversed by
both the diffracted and the undiffracted parts of the atomic beam are equal:N = 1z tanθB/dG.
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into a direction corresponding to a direct reflection at the mirror surface. From figure 1 it
is obvious that the number of grating planesN crossed by a wave incident at thenth-order
Bragg angleθn is

N = 1z

dG
tanθn ≈ 1znkL

dGkA
= nk2

L1z

πkA
. (4)

The approximation is valid with an accuracy of 4% for Bragg anglesθn < 20◦. Thin
(Raman–Nath) and thick (Bragg) diffraction regimes are identified by the conditionsN < 1
or N > 1, respectively. The interaction length corresponding to the borderlineN = 1
between Bragg and Raman–Nath diffraction is1z = πkA/(nk2

L). Compared to the result
obtained above (equation (2)), the functional dependences agree within a factor of 2π .

Practically, the distinction between thin and thick gratings results in qualitatively
different diffraction properties. In the (thin) Raman–Nath regime diffraction of an incoming
plane wave occurs within a broad range of incidence angles and wavelengths. Furthermore,
diffraction is symmetrical into conjugated orders. Therefore, even in the case of non-
absorbing gratings, the maximal diffraction efficiency which is the intensity in one diffraction
order normalized by the incoming intensity is limited to 33.9% [22]. On the other hand, in
the Bragg case the diffraction is angle and wavelength selective. Diffraction happens only
if the incidence angle is matched to the frequency, otherwise the incoming wave passes
the crystal without being diffracted. In the coupled-wave theory for Bragg diffraction at
material gratings, it is shown that the relative angle and wavelength (velocity) selectivity
corresponds to the inverse number of grating planes which are crossed by a beam incident
with the Bragg angle on a straight trajectory through the crystal [23]:

1θ

θ
= 1kA

kA
= 1

N
= πkA

nk2
L1z

. (5)

The reciprocal dependence of the velocity (wavevector) selectivity on the diffraction
order has been demonstrated experimentally for atomic de Broglie wave diffraction by
Giltner et al [2].

An additional feature of the Bragg regime is that, at a given angle of incidence, at most
one diffracted beam appears. Thus, in the case of non-absorbing refractive index gratings, a
diffraction efficiency of 100% can be reached. Furthermore, the intensity oscillates between
the diffracted and undiffracted beam as a function of the crystal length or the potential
modulation index—the so-called ‘pendellösung’ phenomenon.

4. Bragg diffraction at travelling waves

It should be noted first that in the following we will interpret our investigated Bragg
diffraction behaviour at temporally modulated light crystals as diffraction at travelling
light waves, which do not actually exist. If all frequency sidebands of the complete
temporally modulated light field are considered, then the result is simply a spatially
stationary and temporally modulated light crystal. Nevertheless, in our observed Bragg
diffraction processes only two frequency components of the light field were involved at
a time. By considering only these two components, a travelling ‘sub’-grating can be
constructed whose diffraction properties are easily obtained. This is not the direct way of
describing such an interaction, but it might give a more intuitive insight into the observed
phenomena than a direct approach by solving a time-dependent Schrödinger equation.

The example of an acousto-optic modulator shows that Bragg diffraction of photons can
be obtained at travelling material gratings. This is the analogue to the case of matter-waves
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Figure 2. Illustration of the wave-matching condition for diffraction at a travelling wave. The
wavevectors which are involved are:EkA and Ek′

A, which are the wavevectors of the incoming
and diffracted atomic beams in the laboratory system, respectively;EkA,Trans and Ek′

A,Trans, which
are the same wavevectors in a reference frame moving with velocityEvM parallel to the grating
vector EkG of the light intensity grating, andEkTrans = −mEvM/h̄ which has to be added to the
atomic wavevectors in the laboratory system in order to perform the coordinate transformation.
It is important to note that the light grating vectorEkG is identical in both coordinate systems.
The illustration shows that a direct transitionEk′

A = EkA + EkG is not possible, because the wave-
matching condition requires a symmetrical triangleEkA, Ek′

A and EkG. Nevertheless, the wave-
matching condition is fulfilled in a reference frame of a light wave moving with velocityEvM,
because of the different transformations of the atomic and the light wavevectors. The result is
the same as in the direct transition:Ek′

A = EkA + EkG, but diffraction is only obtained if the light
intensity grating propagates with the particular velocityEvM.

diffracted at propagating light gratings. For the production of a moving light intensity
grating, it is sufficient to superpose two counterpropagating light waves with a frequency
differenceωM. The resulting intensity grating travels in the direction of the higher frequency
wave with a velocityvM:

vM = ωMλL

4π
= ωM

2kL
. (6)

For diffraction at such a light wave the Bragg angle has to be matched to the travelling
wave velocity. The reason is that a coordinate transformation into the inertial frame of the
travelling wave results in a different angle between the atomic beam and (now) standing
light wave. This is due to the fact that the transformation yields a significant change of the
atomic wavevector component in the propagation direction of the intensity grating, whereas
the light grating vector remains constant. Figure 2 shows the situation. The incoming atomic
wavevectorEkA cannot be diffracted by the direct processEk′

A = EkA + EkG, at a stationary
light grating with wavevectorEkG into the Ek′

A state, because the wave-matching condition
is not fulfilled. The length and hence the energy of the diffracted de Broglie wave would
change. Nevertheless, this diffraction process is enabled by the less apparent means of
diffraction at a travelling grating. If the light intensity grating propagates with the velocity
EvM parallel to its grating vector, then a coordinate transform into its frame of rest adds a
vector EkTrans = −mEvM/h̄ to the incoming atomic wavevectorEkA,Trans = EkA + EkTrans, whereas
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the light grating vector remains constant. At two specific velocities,EvM, the wave-matching
condition is fulfilled and the de Broglie wave is diffracted, which means that the grating
vector EkG adds to the atomic wavevector:Ek′

A,Trans = EkA,Trans+ EkG. In figure 2 only one of
the possibilities is drawn, for reasons of clarity, where the atomic wavevector is diffracted
into one of the two Bragg orders. The other possibility corresponds to diffraction into the
conjugated order and is obtained by inverting the sign ofEkG (actually a grating must always
be represented by two grating vectors in opposite directions). Transforming the result back
into the laboratory frame by subtractingEkTrans yields the diffracted wavevectorEk′

A = EkA +EkG.
Thus, momentum conservation is fulfilled as in the case of diffraction at a stationary wave,
but the length of the diffracted wavevector has changed by1k′

A = kTranskG/kA. The
corresponding change of the atom’s kinetic energy1E = h̄2kA1kA/m = h̄ωM is transferred
by the two different photon frequencies of the absorption and stimulated emission processes.
The geometry of figure 2 shows that the new angle of incidence,θ ′, where diffraction at
the travelling wave occurs, differs from the stationary Bragg angleθB by

1θ = θ ′ − θB ≈ kTrans√
k2

A − (kG/2)2
≈ ωM

kGvA
. (7)

The approximations are valid to first order inkTrans corresponding to the case where the
atomic beam velocity,vA, is much larger than the velocity of the travelling light intensity
grating,vM, which is always fulfilled in our experiment. If required, an exact solution can
be obtained by analytically solving the geometric problem depicted in figure 2. If the Bragg
angle is altered by tilting the standing light wave by1θ , then the direction of the atomic
beam diffracted at the propagating light crystal changes only by a small amount1φ from
the stationary case:

1φ ≈ 1

2

(
kG

kA

)2

1θ . (8)

Due to the small grating vector as compared to the atomic wavevector, the atomic
beam is diffracted almost to the same spatial position as in the unmodulated case. The
modulation frequency determines only whether diffraction occurs at all, but it does not
change the diffraction angle by a considerable amount. In analogy to photon diffraction by
an acousto-optic modulator, the modulation frequency adds to the frequency of the diffracted
atomic de Broglie wave. The sign of the frequency shift depends on the diffraction direction
with respect to the propagation direction of the light wave.

5. Travelling waves by retro-reflection of modulated light waves

Our slowly travelling light wave is created by retro-reflection of an intensity- or frequency-
modulated light wave at a plane mirror. In the ideal case the modulation produces two
additional frequency sidebands, separated symmetrically from the centre frequency by the
modulation frequencyωM.

The electric field amplitudeE of a modulated light wave with centre frequencyωL and
modulation frequencyωM can be expressed as

E = exp[iωL t + i(η0 + η1 sinωM t)] . (9)

Here, the complex modulation index is considered to be composed of a constant term
η0 and a time-dependent harmonic perturbationη1 sinωM t . The effects of phase modulation
and of amplitude modulation can be calculated simultaneously for the same modulation
frequency, by composing the complex modulation index using both a real phase modulation
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termβ and a real amplitude modulation termα according toη0 = β0+iα0 andη1 = β1+iα1.
Note, that the termα0 yields half of the mean intensity absorption coefficient of the
modulation (according toI/I0 = |E|2/|E0|2 ∼ e−2α0), whereasβ0 corresponds to a constant
phase offset. For a modulation without gain, the restrictionα1 < α0 has to be fulfilled.

For a small modulation amplitude,η1, the electric field of the modulated wave can be
expanded into first-order Taylor terms:

E = exp[iη0]{exp[iωL t ] + 1
2η1 exp[i(ωL + ωM)t ] − 1

2η1 exp[i(ωL − ωM)t ]} . (10)

The constant factor exp[iη0] in front of the bracket may be omitted. The exact solution
for a high modulation index and higher-order harmonics can be calculated by expanding
equation (9) into the Bessel functions of corresponding order. The three terms in the
brackets correspond to the undisturbed part of the transmitted wave and to the frequency-
shifted sidebands (±ωM), respectively.

After retro-reflection of the three frequency components at the plane mirror, a
superposition of different kinds of ‘almost standing’ waves results:

(i) Each of the three frequency components can superpose with its retro-reflected
counterpart, leading to three standing waves with the same spatial phases at a sufficiently
small distance from the mirror surface.

(ii) Additionally, each frequency component can superpose with its retro-reflected directly
adjacent frequency. The four possible combinations correspond to four slowly
propagating waves with the same absolute values of their travelling velocities:

vM = ± c

2

ωM

ωL
. (11)

Two of these four waves move towards the mirror surface, the others travel in the
opposite direction.

(iii) Only the two sidebands superpose, leading to two slowly travelling waves. They move
in opposite directions with the velocities±2vM.

The decomposition of our light intensity grating into components of a certain travelling
velocity is justified by the linearity of the diffraction process, and by the angular selectivity
of Bragg deflection. Thus, the light wave field may be arranged such that the Bragg
condition is fulfilled for one of its standing or slowly travelling waves only. Then the
diffraction process selects only this light field component out of the superposition, and
ignores the other contributions which do not satisfy the phase-matching condition. The
resulting physical situation is almost the same as if only one single travelling wave existed.

In case (i) the superposition of the three standing waves with equal phases and almost
equal wavevectors yields, at a sufficiently small distance from the mirror surface, a total
resulting standing wave. This causes normal Bragg diffraction with the same phase-matching
condition and therefore at the same Bragg angle as in the static case.

In case (iii), one travelling wave in each direction exists, which causes diffraction at
the new Bragg anglesθ ′ = θ ±ωM/(kLvA). Nevertheless, the diffraction efficiency is much
lower than in cases (i) and (ii), due to the smaller light intensity caused by only one possible
wave combination.

The most interesting case is (ii), where two waves travelling with the same velocity in
the same direction contribute to one diffraction process. In the following, the diffraction
properties at these two simultaneously travelling waves will be calculated. By completing
equation (10) with its spatial part exp[±ikLx], the propagation direction of the light waves
can be expressed. For example, the two intensity gratings moving slowly away from the
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mirror surface are composed of:

(i) E1 = exp[iωL t − ikLx] + 1
2η1 exp[i(ωL + ωM)t + ikLx]

(ii) E2 = − 1
2η1 exp[i(ωL − ωM)t − ikLx] + exp[iωL t + ikLx] .

Constant phase factors introduced by the phase jump at the mirror surface have been
omitted. The two wavesE3 and E4 travelling in the opposite direction can be derived
by inverting the sign ofkL. As an example,E1 is composed of exp[iωL t − ikLx]
corresponding to a wave with the centre frequencyωL travelling towards the mirror surface,
and (η1/2) exp[i(ωL + ωM)t + ikLx], corresponding to a wave with the higher frequency
ωL + ωM travelling in the opposite direction. The superposition leads to an ‘almost-
standing wave’ travelling in a direction normal to the mirror surface with the small velocity
vM = cωM/(2ωL).

For further calculations, it is preferable to change into the reference frame of the
slowly propagating waves with their travelling velocity ofvM = cωM/(2ωL). A non-
relativistic coordinate transformation yields a Doppler shiftωD = ωM/2 which has to be
added (subtracted) to wave components with a negative (positive) sign ofkL. In this frame,
the two originally ‘slowly travelling waves’E1 andE2 are now at rest:

E′
1 = exp

[
i
(
ωL + 1

2ωM
)
t − ikLx

] + 1
2η1 exp

[
i
(
ωL + 1

2ωM
)
t + ikLx

]
E′

2 = − 1
2η1 exp

[
i
(
ωL − 1

2ωM
)
t − ikLx

] + exp
[
i
(
ωL − 1

2ωM
)
t + ikLx

]
.

The total electric field componentE′
T, of the two waves is obtained by adding both

contributions, which yields:

E′
T = exp[iωL t ]

{
exp

[− 1
2iωM t + ikLx

] + exp
[

1
2iωM t − ikLx

] − 1
2η1 exp

[− 1
2iωM t − ikLx

]
+ 1

2η1 exp
[

1
2iωM t + ikLx

]}
= exp[iωL t ]

{
2 cos

(
1
2ωM t − kLx

) + iη1 sin( 1
2ωM t + kLx)

}
. (12)

The two terms inside the bracket correspond to two waves travelling in opposite
directions with the same velocityvM.

In the case of an intensity modulation, the factor iη1 = iβ1 − α1 in front of the sine
function is real (β1 = 0, α1 6= 0). Therefore, the two waves can superpose to a standing
wave, which is spatially stationary. Its intensity varies with the beating periodτI = 2π/ωM.
Because this corresponds to a ‘normal’ standing wave in the reference frame of the travelling
wave, diffraction is possible at the modified Bragg angles

θ ′ = θB ± ωM

2kLvA
. (13)

On the other hand, in the case of a phase modulation, the factor iη1 = iβ1 − α1 is
imaginary (β1 6= 0, α1 = 0). Then a spatially stationary phase of the intensity grating exists
for only half of the periodτP = π/ωM, followed by a phase jump ofπ . Diffraction at
such a non-stationary grating occurs only if the transit time of the atoms is smaller than this
period. If not, destructive interference between the diffraction contributions of theπ -shifted
intensity gratings suppresses diffraction. The small interaction timeτ = 1z/vA < π/ωM

reduces the angular selectivity of the Bragg diffraction. In this case the angular uncertainty
of the diffraction process (1θ = π/(kL1z) > ωM/(kLvA), obtained by insertingθ = kL/kA

into equation (5)) is twice as large as the corresponding change of the Bragg angle
(±ωM/(2kLvA)) due to the phase modulation. Therefore, diffraction at such a thin phase-
modulated light wave cannot change the Bragg angle by a detectable amount. Another
argument as to why sideband production by phase modulation should not have any effect
on the atomic diffraction is that the total light field in front of the retro-reflection mirror
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does not change any properties which can be ‘seen’ by the atoms—at least when the light
frequency is detuned far enough off resonance of the atomic transition. Particularly, the
spatial position of the light crystal remains constant, and no intensity fluctuations on the
timescale of the modulation frequency appear, as in the case of amplitude modulation.

To summarize, only intensity-modulated light waves lead to Bragg diffraction of the
atomic de Broglie waves at detuned Bragg angles. Only in this case is a spatially stationary
standing wave obtained which diffracts atoms. In the case of phase modulation, the
contributions of the two travelling waves yield a non-stationary light field even in the
reference frame of the moving gratings, and no atomic diffraction results.

It must be mentioned that this analysis is only valid in the geometry of our experiment,
where the travelling waves are created by retro-reflection of modulated light waves. If, on
the other hand, the phase modulation were produced in only one of the beams, for example,
by vibrating the retro-reflection mirror, diffraction would result at the detuned Bragg angles
θ ′ = θB ± ωM/(2kLvA).

6. Experiment

In the experiment, we use a beam of metastable argon atoms. In the source the atoms are
excited by aDC gas discharge to their metastable 1S5 state, which can be detected by our
channeltron detector. The atom source is cooled with liquid nitrogen, following a design
proposed by Kawanakaet al [24]. The thermal velocity of the cooled Ar beam has an
average value of 440 m s−1 with a spread of approximately 60% (FWHM). After the source,
the atomic beam is collimated by two slits with a width of 10µm, separated by a distance
of 1 m. The resulting divergence is less than one photon recoil (0.35h̄k). The atomic beam
is oriented parallel to the surface of a 6 cm long mirror, where the standing light wave
is formed by retro-reflection of a 811 nm light wave with an intensity of 450µW cm−2.
The angle of the mirror surface with respect to the atomic beam direction corresponds to
the angle of incidence of the atomic beam into the light crystal. This mirror angle can be
adjusted with a piezo-transducer withµrad precision. The absolute angle has been calibrated
with an interferometric measurement as a function of the applied voltage with an accuracy
of 8%. The Bragg angle of the argon beam is 28µrad, corresponding to four grating planes
which are crossed by the diffracted and the undiffracted beams on their paths through the
6 cm long light crystal. This means, that the experiments are performed in the regime
of Bragg diffraction, according to equation (2), and the angular selectivity (and velocity
selectivity) of the diffraction should be≈25% of their mean values.

In order to form a non-absorbing refractive index grating the light produced by a
stabilized diode laser with a linewidth of 1 MHz is detuned by 80 MHz from the 811 nm
closed transition of the metastable argon atoms. Theintensity of the laser light can be
modulated in the MHz regime using an acousto-optic modulator. On the other hand, a
phasemodulation of the light can be achieved by modulating the diode laser current, which
changes the laser frequency and correspondingly the phase.

It may be noted that the modulation frequencies used in our experiment are in the
sub-MHz regime, which is within the bandwidth of the unmodulated laser line (1 MHz).
This means that the light modulation does not create new frequencies which did not already
exist in the unmodulated beam. An important point is that the sidebands have a fixed phase
relation, which yields after retro-reflection a standing wave in a reference frame moving with
a particular velocity. On the other hand, the frequency components within the homogeneous
laser line have no stationary phase relation, and therefore cannot form a stationary standing
wave in any reference frame.
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Figure 3. Spatially resolved Bragg diffraction pattern of an argon atomic beam at a stationary
standing light wave. A 5µm slit was scanned in front of the extended channeltron detector
in steps of 2µm. Each data point was elapsed in 1 s. The angle of incidence of the atomic
beam into the light wave was exactly the Bragg angle (28µrad) obtained with our experimental
parameters (vA = 440 m s−1, λL = 811 nm). The broader peak (arrow) corresponds to the
diffracted beam, whereas the other peak is due to the transmitted part of the de Broglie wave.
At other angles of incidence only the transmission peak was observed.

After the interaction region, the atomic beam passes a 137 cm long separation section
in order to isolate diffracted and undiffracted beams. The spatial diffraction patterns are
resolved by scanning a 5µm slit in front of the channeltron detector and measuring the
beam intensity as a function of the slit position. Figure 3 shows a typical result for the
case of static Bragg diffraction. The narrower, higher peak corresponds to the undeflected
part of the atomic beam, whereas the broader peak (arrow) is deflected by 2¯hk into the first
Bragg diffraction order. As expected, no diffraction into the conjugated order is observed,
which is indicated by the absence of a third peak located symmetrically on the other side
of the undeflected beam. The angle of the mirror surface with respect to the atomic beam
was adjusted for this scan to the Bragg angle of 28µrad. The width of the transmitted
peak (FWHM ≈ 18 µm) shows the spatial resolution of our experiment. The width of the
diffracted peak (FWHM ≈ 36 µm) corresponds to this resolution (18µm) plus an additional
term (also 18µm), which results from the fact, that the diffracted atoms have a residual
velocity distribution of approximately 25% (FWHM) around their mean value of 440 m s−1,
due to the velocity selection of our Bragg crystal. On the other hand, the transverse velocity
(2h̄kL/m ≈ 2.5 cm s−1) is identical for all diffracted atoms. Thus, the longitudinal velocity
distribution transforms into a time-of-flight distribution in the 137 cm separation section,
resulting in a spatial broadening of the peak in the detector plane. The value of the additional
broadening (19µm) calculated with our assumed velocity distribution of 25% agrees with
the experimental value (18µm) within the experimental resolution.

For investigating diffraction at travelling light gratings, the detection slit was fixed at the
peak of the first diffraction order, as marked by the arrow in figure 3. As already mentioned,
the spatial position of the Bragg deflected beam is expected to stay constant, independent
of the modulation frequency. Figure 4 shows what happens if the mirror angle is now
detuned by a certain amount (approximately 75µrad) from the stationary Bragg angle, and
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Figure 4. Bragg diffraction efficiency as a function of the light intensity modulation frequency,
at an angle detuned by 75µrad from the stationary Bragg angle. The detection slit position is
exactly in the first Bragg diffraction order as indicated in figure 3 (arrow). Without intensity
modulation, almost no diffracted signal is observed, due to the Bragg angle detuning. If the
light modulation frequency is increased, the diffraction efficiency passes through a maximum
at 75 kHz, at which the Bragg angle detuning is compensated by diffraction at a travelling
component of the light crystal. The corresponding propagation velocity of the standing wave is
10 cm s−1. By usingphase- instead ofintensity-modulated light no diffraction at detuned Bragg
angles was observed.

the laser light is now intensity modulated, with a slowly increasing modulation frequency
in the range from 5 kHz to 300 kHz in 20 s, with a resolution of 1 kHz. The frequency
scans were performed repetitively and integrated for approximately 30 minutes in order to
average over laser jitter and atomic beam fluctuations. At low modulation frequencies, a
low count rate of the diffracted beam is observed. By increasing the intensity modulation
frequency, the intensity of the diffracted beam rises and passes through a maximum at
a frequency of 75 kHz, which is expected for a Bragg angle detuning of 70µrad and an
atomic beam velocity of 440 m s−1 according to equation (13), and which corresponds to our
experimentally adjusted angle (75± 6 µrad) within the experimental accuracy. The width
of the peak (FWHM ≈ 40 kHz ≈ 53%) is mainly determined by the velocity distribution
(60%) of our atomic beam, and not by the velocity selectivity of our light crystal (25%).
This is because during a frequency scan the diffraction condition (equation (13)) is fulfilled
successively for all velocity components of the atomic beam. It should be noted that the
narrow peak at 96 kHz consists of one single data point which was not reproduced in other
experiments and is thus assumed to be noise. The data shows clearly that a detuned Bragg
angle results in a suppression of Bragg diffraction, but this detuning can be compensated
for by an intensity modulation of the light crystal.

An identical experiment with phase-modulated light has not yet been performed, due
to the fact that a continuously scanning phase modulation frequency was not available
at this time. Instead, constant frequency sidebands were created by modulating the diode
laser frequency according toE = exp{it [ωL +ωD sin(ωM t)]}, whereωL was the central light
frequency,ωD = 2π×150 kHz was the maximal frequency deviation andωM = 2π×75 kHz
was the modulation rate. Such a frequency modulation is equivalent to a phase modulation
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E = exp{iωL t + iβ sin(ωM t)} with a phase modulation indexβ = 2, which is close to the
optimal value for first-order sideband production. The sidebands were thus separated by
±75 kHz from the centre frequency, which is almost the same situation as in the previous
experiment, where the intensity modulation frequency at the peak of the diffraction efficiency
was also 75 kHz (figure 4) at the detuned Bragg angle. Nevertheless, this time with the
frequency-modulated light field, no Bragg diffraction was observed at the same detuned
Bragg angle position. A scan of the mirror angle also showed that no diffraction at other
angles, with the exception of the ‘normal’ stationary Bragg angle, occurred.

As explained above, the suppression of diffraction at the travelling waves is due to
the fact that the diffraction contributions of the two components, which contribute to each
travelling wave, are interfering destructively during the travelling time of the atom through
the interaction region. Nevertheless, there might be a small effect due to diffraction at
the travelling wave formed by superposition of the two sidebands (case (iii)), which we
could not observe to date. Further experiments with improved phase modulation methods
are planned to check whether this is due to experimental limits or destructive interference
effects of higher-frequency sidebands which are always produced by phase modulation of
light waves.

7. Summary

We demonstrated for the first time Bragg diffraction of de Broglie waves at travelling light
waves, which results in a change of the Bragg angle. The travelling waves are created
in front of a mirror surface by retro-reflecting a modulated light wave. The modulation
produces frequency sidebands, resulting in a superposition of slowly travelling intensity
gratings with different velocities and directions. Nevertheless, due to the angular selectivity
of Bragg scattering, at most one single velocity component can cause diffraction. An
interesting feature of travelling waves created by our method is that two contributions with
the same velocity diffract simultaneously, and can interfere. We demonstrated that this type
of interference is constructive in the case of intensity-modulated light, and destructive in
the case of phase-modulated light.

Bragg diffraction at travelling light waves opens a wide field of applications in
fundamental research. It is closely related to diffraction-in-time studies. It is particularly
interesting to have a coherent, easily controllable frequency shifter for de Broglie waves,
an analogue to an acousto-optical modulator for light waves, even with the advantage of
producing almost no angular deflection from the static case, as acousto-optical modulators
normally do. Other studies, such as diffraction at accelerated light crystals, can be
performed in an analogous way, giving more insight into time-dependent de Broglie wave
manipulations. By changing the intensity modulation frequency in a controlled manner, even
phase modulation of de Broglie waves can be realized. A direct proof of the frequency shift
of the deflected wave can be obtained by beating it with the non-shifted centre wave in a
Mach–Zehnder interferometer, where time-dependent beating should be observable. This is
a goal of ongoing investigations.

Practical applications of this type of Bragg diffraction could arise in atomic lithography.
Bragg diffraction provides an atom optical coherent beamsplitter, whose efficiency is
continuously tunable between 0 and 100%. The Bragg diffraction at travelling light waves
allows this type of diffraction to be achieved without mechanically moving the mirror,
merely by adapting the modulation frequency, which could be a great advantage in atom
deposition applications.
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