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ABSTRACT

Multiport-beamsplitters permit experiments with photons in higher-dimensional
Hilbert spaces. The classification and description of these experiments, which typ-
ically use beamsplitters, mirrors, and phase shifters, is achieved by methods bor-
rowed from graph theory. An algorithmic approach to the calculation of the unitary
matrix for an arbitrary arrangement of these components is introduced. As an ex-
ample, the two-photon correlations in a generalized Franson type experiment using
three-way beamsplitters are calculated.

1 Introduction

A multiport-beamsplitter can be viewed as a black box transforming n input
states into n output states (see Figure 1). Thus multiports operate on photons in
a higher-dimensional Hilbert space. Inside the black box we find the basic building
components of a multiport experiment: beamsplitters, mirrors, and phase shifters.
It seems convenient to find an abstract description of the workings of the black box
as function of the parameters that can be set (internal phase shifts). A lossless
experimental setup will be described by a unitary matrix.

1 —p S

1
PP o
R . o e 3
R = e )

Figure 1: Any experiment with beamsplitters, mirrors, and phase shifters can be viewed as a black
box. It will be described by a unitary matrix transforming n input states into n output states.

Paper presented at the Adriatico Conference on "Quantum Interferometry”, Trieste,
March 1993. Proceedings in Press, F. DeMartini, A. Zeilinger (Eds.), World Scientific,
Singapore 1993.



2 Formal Description of Multiport Experiments

Graph theory offers a convenient way of describing the basic topological setup
of an experiment. A graph consists of vertices connected by edges. In the drawing of
a graph a vertex is usually represented by a point and the (directed) edges by arrows
connecting the points.! This drawing is an abstract description of an experiment with
photons (see Figure 2):

1. The experimental setup begins after the photon sources and ends before the
detectors.

2. Each optical component is represented by a vertex of a directed graph.

3. All possible paths through the experimental setup to the detector are described
by the graph’s edges. The graph may contain loops or multiple edges. (A loop
is an edge connecting a point with itself.)

4. The degree of a vertex (optical component) is the number of edges incident.
Thus the degree of a mirror or phase shifter is two (one input port and one

output port), the degree of a beamsplitter is four (two input ports and two
output ports).

5. The properties of all optical components having only one input and one output
port (mirrors, phase shifters, etc.) are taken into the graphs edges.

6. The basic building block is the beamsplitter. The properties of the beamsplitters
(complex reflectivity and transmittivity) are attached to the vertices of the

graph.

7. Each beamsplitter must have four ports, therefore all “dangling” edges (i.e.
external input and output ports of the system) can be left away in the drawing.
Thus the number edges incident on each beamsplitter represented by a dot
in the graph must be thought supplemented by edges not connected to other
beamsplitters, making a total of four ports (see Figure 2).

Once the graph of an experiment is drawn it is easy to formalize its description.
The experimental setup can be described by a matrix S transforming the probability
amplitudes at the n input ports into the amplitude at the n output ports. The matrix
is unitary if the setup is lossless.

3 Quantum Phase Tracing

The calculation of the unitary transform matrix is accomplished by “quantum
phase tracing”. All possible paths from the sources to the detectors are traced through
the graph. The phases along the edges are summed up and the resulting probability
amplitudes of indistinguishable alternative paths inside the experiment are added up.?



The detection probability at a given output is proportional to the absolute square of
the probability amplitude.

The graph is the fingerprint of the experimental setup. Isomorphic graphs
belong to equivalent experimental setups. Graph theory provides a list of all possible
graphs with a given number of edges and vertices. Thus we can list all non-equivalent
experimental setups with a given number of beamsplitters (see Figure 2). ‘

Figure 2: All possible setups with one and two beamsplitters and their corresponding graphs: a
single beamsplitter, a Mach-Zehnder interferometer, a Fabry-Pérot interferometer, and a three-way
beamsplitter. Each dot in the graph represents a beamsplitter and must be thought supplemented
by “dangling” edges (i.e. the external input and output ports) to give a total of two input and two
output ports at each beamsplitter.

Quantum phase tracing in the frequency domain assumes all phase shifts are
frequency dependent. This gives the system matrix of the experimental setup as a
function of the vertices (beamsplitters) and the edges (phase shifts). The frequency-
dependent system matrix is then integrated over the input wave packet profile giving
the time-dependent output amplitudes.®®



Scattering matrix methods can be used to calculate the system’s unitary ma-

trix.®

4 Calculating the System Matrix
The system matrix relates the output probability amplitudes with the input:
Eoug = S(-I‘m. (1)

The system matrix describes the external outputs connected to the detectors
as a function of the external inputs which are connected to the sources. It contains
two contributions. One describes the scattering at the beamsplitters; the other the
propagation between connected beamsplitters. Each beamsplitter may have internal
and external ports. The internal ports are those which are connected to another
beamsplitter in the system. The number of external ports is equal to the dimension
of the system’s unitary matrix. '

The scattering matrix describing the vertices of the graphs (beamsplitters) can
be build from block matrices describing the transfer from internal and external inputs
of the beamsplitters to their internal and external outputs:®

Gout(ext) \ _ | See Sei din(ext) @)
aout(int) | S Si am(int)
The submatrix S;, for example, describes the scattering from the internal inputs

of the beamsplitters to the external outputs. The connection matrix I' describes the
propagation between beamsplitters, that is the edges of the graph (with phase shifts):

Gout(int) = T @m(int). (3)

Solving equations (2) and (3) for the external ports gives an expression for the system
matrix: '

Eout = [Sec + Set (r - Sii)—l Sie] 6in (4)

5 Example: Three-Way Beamsplitter

The experimental setup for a three-way beamsplitter and the corresponding
graph are shown in Figure 3.

Each vertex in the graph (simple beamsplitter X with reflectivity rx and trans-
mittivity ¢x) is described by a 2 x 2 matrix*5:

(2)=[& & 1(2) ®
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Figure 3: Experimental setup and graph for a three-way beamsplitter. External input ports: Aj,
As, By; Internal input ports: By, Ci, Ca, Dy, Ds; External output ports: Cs, Ds, Ds; Internal
output ports: Ag, A4, Ba, By, C4.

The inputs of each beamsplitter are numbered 1 and 2; the outputs are num-
bered 3 and 4. The scattering matrix for the three-way beamsplitter is given by

( 03 \ i 0 0 0 0 tc iTc 0 0 ) / A1 \
Ds 6 0 0|0 O O ¢tp zrp As
Dy 0 0 010 0 0 2p tp B,
A3 — tA iTA 0 0 0 0 0 0 Bl (6)
Ay irgy t4 00 O 0 0 O Ch
B; 0 0 uwgi{tsg 0 O 0 O C,
B4 0 0 tB if‘B 0 0 0 0 ’ D1
\Cs) [0 0 0|0 ér¢c t¢ 0 0 |\ D)
The connection matrix for the three-way beamsplitter is
As [e@/2 0 0 0 0 ][ B
Ay 0 0 0 1 0 Cy
Bs | = 0 0 et o 0 Ca )
By 0 1 0 0 0 D,
Cs | 0 0 0 0 e/2 | \ Dy

A common phase in the connection matrix has been set to zero.
For B and C as 50% beamsplitters, A and D as 66.67% beamsplitters, the
multiport has the following system matrix S relating input states with output states:
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6 One Photon Descriptibn

The photon at input port { of the multiport is described by wave-packet cre-
ation operator &;(w) which creates a photon with a frequency distribution €(w):®°

Af@) = [eaw)ifw)ds (9)

alt) = == [ alwe s (10)

The function o(t) gives the probability amplitude for photon detection with a detec-
tor placed at input port ! before the system.

A coherent superposition of photon states at the input ports [ results in a
probability amplitude after the system given by

1 7 —twt
an(t) = = ZI: 0/ Somt(@) &1(w)e~ do

with Sy, the matrix element relating a specific input port [ with a specific output
port m.

7 Two-Photon Description

Now we consider the case of two photons propagating through two systems
(e.g. see Figure 4). The two photon wave-packet creation operator is:3

K1(Q) = [ [ ¢lon,0n) (0n)af(wr)dun deoy (1)
00
with a normalized joint wave-packet profile.

77|C(w1,w2)|2dw1dwg =1 (12)

If the two photons are directed into separate multiports the coincidence prob-
ability during the time T (coincidence window) is the integral over the second order

correlation function Gg?%,(tl, t2) describing the correlation at detectors 1/ and 2’ placed
after the multiports.

T/2 T/2

Pu(T) = 7? / / GO (11, t) dt, dt (13)
~T/2 -T/2
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Figure 4: Two photons from a parametric downconversion source are directed into separate multi-
ports and detected in coincidence.

The photodetectors at the output ports have an efficiency 5. The second order cor-
relation function is given by:
2

Gg?%’(tlth) = // Slll(wl)5212(w2)<(wl,u.72) e_" (w1t1+w2t2)dwl d(dz (14)
(1]

with Syr(wi) and Syo(ws) the matrix elements relating the respective input and
output ports.

8 Two-Photon Coincidence Experiment with Two Three-
Way Beamsplitters

We consider two three-way beamsplitters as described above. Signal and idler
photons from a parametric downconversion source are fed into input ports A; and Aj.
This experiment is a generalized form of that suggested by Franson.” In the present
case three possible paths can be brought to interference. For simplicity we consider
the degenerate case w, = w; = w,/2 and two identical three-way beamsplitters (see
Figure 4). The parameters that can be varied are the phase shifts ¢, and ;. The
UV pump wave is considered ideally monochromatic.® We assume the filters have
equal bandwidth o and centers wg = wy/2 before the detectors.

1. oy € 0T € woT and ¢y € 0T < weT, that is the path differences are much
less than the filter bandwidths and much less than the detector response times
T, the probability for coincidence counts is

1
81
The coincidence probability is the square of the single-photon detection proba-
bility and we see single-photon interference fringes with visibility 1.

P = = [3+2cos(ip1) + 2 cos(pz) + 2 cos(p1 + )] (15)



This is a consequence of the fact that for small enough path differences in the inter-
ferometers the time of detection of one photon does not provide information about
the path taken by either photon.

2. If oT < woT' < 1 and 0T < woT < 3, that is the path differences are much
greater than the filter bandwidths and much greater than the detector response
times T', the probability for coincidence counts then is

1
P} ==

5 [3 4+ 2cos(2¢p1) + 2008(2p2) + 2cos(2¢p1 + 2¢2)] (16)

We observe two-photon interference fringes with visibility 1.

In the second case the coincidence window is so narrow that the second photon’s
arrival time can be used to determine the path take by the first photon in the other
interferometer. Thus there can be no single-photon interference. Detection in coinci-
dence, on the other hand, destroys the two-photon path information, that is the three
possible combinations long-long, medium-medium, and short-short are indistinguish-
able and can interfere. This is a direct result of the entanglement of the two-photon
wavefunction.
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