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Zeno’s paradox in quantum cellular automata
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The effect of Zeno’s paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata.
It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive
measurements of cellular automaton states are operationally indistinguishable.

1. Zeno’s paradox and quantum mechanical
cellular automata

Among other qualities, a quantum cellular au-
tomaton (QCA) can be considered as a novel tool
for the investigation of the coevolution of a large
number of individual points on a lattice in some
parameter space under the condition of quantum
mechanical transition rules [1, 2].

One can therefore expect as a possible result of
QCA research to obtain a new viewpoint of the
evolution of quantum systems in general. Natu-
rally, it will be of particular interest to study in
the framework of QCA the relations between
guantum systems and ‘“macroscopic objects”. For
example, in recent publications we have investi-
gated different strategies of introducing irre-
versibility into the quantum domain [3], and one
of us has compared classical and quantum me-
chanical lattice properties with regard to their
reversibility /irreversibility properties [4].

In the present paper we focus our interest on a
particular aspect of the quantum mechanical
measurement process, named “Zeno’s paradox”
[5] (or sometimes also the “watchdog effect” [6]),
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and we simulate this effect with the means of
QCA.

What is the “Zeno’s paradox” in quantum the-
ory? In its simplest version [6] it describes the
general behavior of a quantum system which is
repeatedly measured in short time intervals such
that its “motion is frozen”, i.e. the internal dy-
namics of the system is totally suppressed.

Consider the state |y) of a quantum system
with Hamiltonian H at time ¢ =0. Now divide
the time axis into small elements A¢. Then the
“decay probability” P(At) of not finding the state
[ at the time Ar is

P(Ar) =1~ Kyle " |y|?
= (CpIH?1g) - (CwlHIY)Y)*)(Ar)?
+o((Ar)?). (1)

If one now repeats the measurement »n times
during At, the probability P(At) reduces because
of the quadratic time dependence to

2
PP =nl 2L) (CuIH) ~ (ColHIE)?).
n
(2)
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Thus, in the limit n — % one obtains P'=0.
Consequently, the internal dynamics of the re-
peatedly measured quantum system is totally sup-
pressed, a fact which leads to a disappearance of
interferences between distinguished individual
amplitudes and thus constitutes an irreversible
process. Basically, this is a result of the non-
unitary “collapse of the state vector” [6].

In order to simulate the Zeno’s paradox with
cellular automata (CA) we propose to study the
“general quantum evolution” of a CA whose site
is characterized by a complex amplitude c(x,¢),
and whose evolution rule is

c(x,t+1)y=c(x,t) —iEc(x,t)

+i8%c{x + L, 1) +idc(x — 1,1). (3)
Comparison of eq. (3) with refs. [1-4] shows that
it is a more general evolution rule than the one
used previously to define quantum cellular au-
tomata (QCA). For the latter, the constant E is
chosen to vanish. Thus, for QCA the evolution
rule is given by
c{x,t+1)=c(x,t) +id"c(x+1,¢)

+idc(x—1,1). (4)

The generalization of evolution rule (4) to the
rule of eq. (3) is of particular interest, since for
a special choice of the parameters eq. (3)
corresponds to the discretized version of the

Schrédinger equation [7). That is, for real values
of 6, i.e. for

8§=6,+16., ¢ =arctan(48./8.) =0 (5)

one obtains from (3) with § = JE:
c(x,t+1)
=(1—-iE)c(x,t)+ 3iEc(x+1,¢t)

+3iEc(x—1,1). (6)

Eq. (6) can now be interpreted with V=1 — F as
the discretized Schrédinger equation for a parti-
cle with potential energy V. Comparings cqs. (4)
and (6) onc finds that for both evolution rules
unitarity is approximately preserved as long as
8% = 0. This means that a QCA is comparable to
a Schrodinger type evolution only for  — (). Nev-
ertheless, as will be shown below, both evolution
(4) and (6) exhibit the behavior due to Zeno's
paradox in the simulation of “measurements” in
cellular automata governed by quantum mechani-
cal rules.

2. Measurements in cellular automata obeying
the general quantum evolution rule

Decnoting with J = 1,...,120 the sites at time
step I of a cellular automaton, and attributing a
complex number c¢,, to each site, the evolution
rule (3) reads in a more convenient notation as

Crog=(1—1E)c, +1idc; ;o +i6%, ;. (3)

We shall present the CA in terms of probability
maps attributing to each site (1, J) the real value
P, = lc,,|* with the normalization

TleylP=1. (7)
z

Now we introduce a “measurement” at cach site
Jinrow I =M (i.e. at “time” M), and we calcu-
late the probability distribution in row /=N,
with N > M. To do this, we carry out the follow-
ing procedure for cach amplitude c¢,,,: First,
choose ¢, = |, with ¢,, =0 for I # M. Then cal-
culate c¢y,., with J' #J, with the help of cq. (3).
Introducing the notation

Cngrg = Cppl VMY

onc obtains for cach initial site J a set of ampli-
tudes ¢y, (see fig. 1). Finally, we calculate the
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O row M

row N

Fig. 1. Construction of the probability distribution Py, =
\(‘N,I: at “time” I=N after measurements have been per-
formed at each site J at “time” /=M. The third index in
¢nyn indicates the contribution from the calculatory proce-
dure described in the text following the choice of ¢, =1.
(Very thick lines: |cy,,1°, thick lines: lensys )7, thin lines:

|CNJ'J+2|2-)

sum

Pyy = LlepPlensl® 8

NI cpsllenl”. (8)
J

Thus, P,,, is the value for the probability ch,,12
in row N and column J' after a measurement has
been performed in row M. The normalization
condition now becomes for each time step [ > M:

ZICIJ'ZICNJ’/’2= L. (9)
J

3. Results

In the plates showing the probability maps for
various quantum mechanical CA different colors
represent different probabilities, and the number
of pixels is 532 x 120 for each image. Plate 1
shows a typical result for a QCA (i.e. where
E =0 and & is complex), whose evolution is al-
tered at time step / = 250. From then on, contin-
uous measurements are performed at each step
I>250 in the way outlined in section 2. The
evolution runs from top to bottom, with one
initial point at site J =60, and & = 0.5(1 + i). The
transition from “ordinary CA evolution” to the

sequence of continuous measurements starting at
I = 250 is very clearly seen, the interference terms
disappear leaving the “smeared out” distribution
on the bottom part of plate 1. However, the result
does not quite show what one would expect from
“Zeno’s paradox”, since the latter should mani-
fest itself through constant values P,, for each J
and for all states N> M = 250. The reason for
this deviation from straight lines of the probabil-
ity distribution in plate I, however, is obvious:
The evolution for 8 =0.5(1 +1) is clearly non-
unitary, and therefore the slight spreading of the
probability distribution after time [= 250 ac-
counts for this fact. So, let us choose a smaller
and see what happens then!

Plate II plots a cellular automaton representing
the discretized Schrodinger equation for 6 = 0.05
(i.e. E =0.1). Here the effect due to Zeno’s para-
dox can be clearly seen: after the onset of the
continuous measurement at time M = 250, the
probability distribution essentially remains con-
stant for all later times (except for one new
“stripe” at the edge of the figure which is due to
the fact that the evolution is still not perfectly
unitary for 8 = 0.05). Note also that the pattern
in some regions is striped while in others it is not,
a quality characteristic for the transitory regime
between the striped QCA (see refs. [1, 2]) and the
“smoother” behavior due to the discretized
Schrédinger evolution. For illustration, plates 111
and IV show the two extremes of “QCA-type
evolution” (plate I1I) and of “Schrédinger evolu-
tion” (plate IV).

In plate IIl, the parameters are chosen to be
very small (6 =0.01 and E = 0.02) such that the
Schrodinger evolution is practically indistinguish-
able from QCA evolution due to the smallness of
E. Moreover, starting measurements at time M =
250, further measurements are performed not
continuously but in intervals of Al = 20. Whereas
continuous measurement would produce a
straight profile of the probability distribution, one
now observes a slight spreading thereof.

As we have seen, such a spreading can be
caused by the CA evolution being non-unitary.
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Here, however, we observe another cause: the
relative frequency of measurements different from
continuous measurements. In principle, by just
looking at the probability maps and the spreading
of the profiles, one cannot distinguish between
the two causes.

Moreover, there exists a curious feature of
Schrodinger-type evolutions as the one presented
in plate IV. There, the variables are 6 = 0.25 and
E =10.5. At time M =250 continuous measure-
ment sets in producing a spreading probability
profile due to the non-unitarity of the evolution
rule. Two points are particularly interesting: (1)
The top part of plate IV, where no measurement
is performed, looks the same for any Schrodinger
evolution for which & > 0. Since the first term on
the r.h.s. of eq. (6) becomes (1 —iE) - —iE for
large E, one can divide the whole equation by E
(altering just the normalization factor), such that
the probability profile looks the same for any
particular choice of E (or of §, respectively). (2)
However, one can still get some in-
formation out of such Schrédinger evolution if
one starts at some time with continuous meas-
urements; then, the rapidity of the spreading
probability profile (i.e. the slope of its “edges”)
provides a useful measure for the non-unitarity of
the CA evolution, i.e. one can obtain additional
information on CA that looked the same as long
as no measurements were performed. In fact, this
property can also be found when applied to QCA
(see plate D), i.e. it is a property of the “general
quantum evolution” as described by eq. (3).

The dependence of the spreading probability
profile (measured in terms of the slope k of its
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Fig. 2. Dependence of the spreading probability profile (mea-
sured in terms of the slope k of its edges) on the choice of the
frequency of measurements (presented in terms of time inter-
vals AT) for different choices of 4.

edges) on the choice of the frequency of measure-
ments (presented in terms of time intervals A7) is
given for various § in fig. 2. The value of £ = 1/d
is determined by measuring the distance d in
time steps I from I =M to the time when the
probability profile reaches the boundary J=1
and J = 120 of the CA.

For very small 8 and continuous measurement
(Al=1), the slope k is practically zero (Zeno’s
paradox), and is growing towards a constant value
for larger Al. The constant value for & is a limit
reached for all choices of 6 after sufficient long
time intervals between successive measurcments,
which just means that in these cases the rarc
measurements have practically negligible influ-
ence on the CA evolution. It is reached for all &
when Al = 10.

Plate 1. Probability map for a quantum mechanical cellular automaton for 8 = 0.5(1 + i) and one initial point at site J = 60.

Continuous measurement sets in at “time” I = 250.

Plate II. Probability map for a cellular automaton representing the discretized Schridinger equation for & = 0.05. Continuous
measurement starting at = 250 leads to the effect due to Zeno’s paradox: the probability distribution essentially remains constant

for all later times I.

Plate III. Probability map for a cellular automation representing the discretized Schrodinger equation for 8 = 0.01. Measurements,

starting at [ = 250, are repeated in intervals of AJ = 20.

Plate IV. Same as plate 11, but with 8 = 0.25 and continuous measurement after [ = 250.

In all four plates the ‘“time axis” / runs from top to bottom.
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However, if & is chosen to be large, the above
behavior of growing slopes k is reversed. In fact,
for all values &> V2, identical behavior is ob-
served: the larger A/ becomes, the smaller is the
value for the slope k& of the spreading probability
profiles, finally merging into the constant value
mentioned above. This is in accordance with the
fact that 8 > V2 describes the QCA regime which
can definitely be classified as non-unitary [1, 2].

Finally, we want to point out a consequence of
this study of Zeno’s paradox in quantum mechan-
ical CA: the degree of non-unitarity and the
frequency of consecutive measurements are oper-
ationally indistinguishable. This results from the
finite resolution time of any possibie series of
“continuous measurements”. In other words, a
perfectly unitary evolution is an idealization which
cannot be confirmed via measurement by any
operational procedure. The probability maps of
quantum mechanical cellular automata as pre-
sented here provide a particularly clear and di-
rect demonstration of this quantum mechanical
fact.
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