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Zeno's paradox in quantum cellular automata 
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The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. 
It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive 
measurements of cellular automaton states are operationally indistinguishable. 

1. Zeno's paradox and quantum mechanical  
cellular automata 

A m o n g  other  qualities, a quan tum cellular au- 

tomaton  (QCA)  can be considered as a novel tool 
for the investigation of  the coevolution of  a large 
number  of  individual points on a lattice in some 

parameter  space under  the condit ion of  quan tum 
mechanical  transit ion rules [1, 2]. 

One  can therefore  expect as a possible result of  

Q C A  research to obtain a new viewpoint of  the 
evolution of  quan tum systems in general.  Natu-  

rally, it will be of  part icular  interest to study in 
the f ramework of  Q C A  the relations between 

quan tum systems and "macroscopic  objects". For  

example, in recent  publications we have investi- 
gated different strategies of  introducing irre- 
versibility into the quan tum domain [3], and one 

of  us has compared  classical and quan tum me- 
chanical lattice propert ies  with regard to their 
reversibili ty/irreversibili ty propert ies  [4]. 

In the present  paper  we focus our  interest on a 
particular aspect of  the quan tum mechanical  
measurement  process, named " Z e n o ' s  paradox"  
[5] (or sometimes also the "wa tchdog  effect" [6]), 

1Address to which reprint requests should be sent. 

and we simulate this effect with the means  of  
QCA.  

What  is the " Z e n o ' s  paradox"  in quan tum the- 

ory? In its simplest version [6] it describes the 
general  behavior  of  a quan tum system which is 

repeatedly measured  in short time intervals such 
that its "mot ion  is frozen",  i.e. the internal dy- 

namics of  the system is totally suppressed. 
Consider  the state I~0) of  a quan tum system 

with Hamil tonian H at time t = 0. Now divide 
the time axis into small elements  At. Then  the 

"decay probabil i ty" P ( A t )  of not  finding the state 
I~b) at the time At is 

P(At) = 1 - I < ~ 1  e - i " A t  I~) l  2 

= ((~OJH21¢j) - ( ( ~ I H [ ~ b ) ) 2 ) ( A t )  2 

+ (1) 

If one now repeats  the measurement  n times 
during At, the probability P ( A t )  reduces because 
of  the quadrat ic  time dependence  to 

2 

(2) 
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Thus, in the limit n--+m one obtains P ' = 0 .  
Consequently, the internal dynamics of the re- 

peatedly measured quantum system is totally sup- 

pressed, a fact which leads to a disappearance of 
interferences between distinguished individual 

amplitudes and thus constitutes an irreversible 

process. Basically, this is a result of the non- 

unitary "collapse of the state vector" [6]. 
In order to simulate the Zeno's  paradox with 

cellular automata (CA) we propose to study the 

"general quantum evolution" of a CA whose site 
is characterized by a complex amplitude c(x, t), 
and whose evolution rule is 

Eq. (6) can now be interpreted with V: 1 E as 

the discretized Schr6dinger equation for a parti- 
cle with potential energy V. Comparings eqs. (4) 

and (6) one finds that for both evolution rules 

unitarity is approximately preserved as long as 
~2__ 0. This means that a QCA is comparable to 

a Schr6dinger type evolution only for ~ ~ 0. Nev- 

ertheless, as will be shown below, both evolution 
(4) and (6) exhibit the behavior due to Zeno's 

paradox in the simulation of "measurements" in 

cellular automata governed by quantum mechani- 
cal rules. 

c (x ,  t + 1) = c ( x ,  t) - i E c ( x ,  t) 

+ i 6 * c ( x +  1,t)  + i a c ( x -  1 , t ) .  (3) 

Comparison of eq. (3) with refs. [1-4] shows that 

it is a more general evolution rule than the one 
used previously to define quantum cellular au- 

tomata (QCA). For the latter, the constant E is 
chosen to vanish. Thus, for QCA the evolution 

rule is given by 

c ( x , t  + 1) = c ( x , t )  + ia*c(x + 1, t )  

+ i a c ( x -  l , t ) .  (4) 

The generalization of evolution rule (4) to the 
rule of eq. (3) is of particular interest, since for 
a special choice of the parameters eq. (3) 

corresponds to the discretized version of the 
Schr6dinger equation [7]. That is, for real values 
of 6, i.e. for 

6 = 6 , + i 6 ~ . ,  ~ = a r c t a n ( a ~ / 6 )  = 0  (5) 

one obtains from (3) with ~ = ½E: 

c ( x , t +  1) 

J 'Ec (x  + 1,t)  = (1 - i E ) c ( x , t )  + 51 

+ ' 2 i E c ( x -  1, t ) .  (6) 

2. Measurements  in cellular automata obeying 
the general quantum evolution rule 

Denoting with J -  1 . . . .  ,120 the sites at time 

step 1 of a cellular automaton, and attributing a 

complex number c H to each site, the evolution 
rule (3) reads in a more convenient notation as 

c l + l . j = ( 1 - i E ) c H + i g i c l .  J ,+ ia*cz . j+  ,. (3') 

We shall present the CA in terms of probability 

maps attributing to each site (1, J )  the real value 

PIJ = ICl.112 with the normalization 

~lc/jI Z= 1. (7) 
./ 

Now we introduce a "measurement"  at each site 
J in row I = M (i.e. at " t ime" M), and we calcu- 
late the probability distribution in row 1 = N, 

with N > M. To do this, we carry out the follow- 

ing procedure for each amplitude c~ja: First, 
choose cM. / = 1, with Or/= 0 for I =~ M. Then cal- 
culate CNj,, with J '  4= J, with the help of cq. (3'). 
Introducing the notation 

CN.I'J := C,~','.I'I¢'~IJ I' 

one obtains for each initial site J a set of ampli- 
tudes cN.rs (see fig. 1). Finally, we calculate the 
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Fig. 1. Construction of the probability distribution PNJ" = 
Ic.,¢~.[ 2 at " t ime"  I = N  after measurements  have been per- 
formed at each site J at " t ime"  1=  M. The third index in 
c?vjw indicates the contribution from the calculatory proce- 
dure described in the text following the choice of CMa = 1. 
(Very thick lines: ICNj,jI 2, thick lines: ICNj,j+I 12, thin lines: 
[CNj,j+212.) 

s u m  

E I C M j I  ICNj,jI 2 . ( 8 )  PNJ' = 2 
J 

Thus, PNJ, is the value for the probability ICNj,] 2 
in row N and column J '  after a measurement has 
been performed in row M. The normalization 
condition now becomes for each time step I > M: 

~ [ c . I  2 ICNJ,j[ ~ =  1. (9) 
J 

3. Results 

In the plates showing the probability maps for 
various quantum mechanical CA different colors 
represent different probabilities, and the number 
of pixels is 532×  120 for each image. Plate I 

shows a typical result for a QCA (i.e. where 
E = 0 and 6 is complex), whose evolution is al- 
tered at time step I = 250. From then on, contin- 
uous measurements are performed at each step 
I >  250 in the way outlined in section 2. The 
evolution runs from top to bottom, with one 
initial point at site J = 60 ,  and ~ = 0.5(1 + i). The 
transition from "ordinary CA evolution" to the 

sequence of continuous measurements starting at 
I = 250 is very clearly seen, the interference terms 

disappear leaving the "smeared out" distribution 

on the bottom part of plate I. However, the result 

does not quite show what one would expect from 

"Zeno 's  paradox", since the latter should mani- 

fest itself through constant values PNJ for each J 
and for all states N > M = 250. The reason for 

this deviation from straight lines of the probabil- 

ity distribution in plate I, however, is obvious: 

The evolution for ~ = 0.5(1 + i) is clearly non- 

unitary, and therefore the slight spreading of the 
probability distribution after time I =  250 ac- 

counts for this fact. So, let us choose a smaller 

and see what happens then! 

Plate II plots a cellular automaton representing 
the discretized Schr6dinger equation for 6 = 0.05 

(i.e. E = 0.1). Here the effect due to Zeno's para- 

dox can be clearly seen: after the onset of the 

continuous measurement at time M = 250, the 
probability distribution essentially remains con- 

stant for all later times (except for one new 

"stripe" at the edge of the figure which is due to 
the fact that the evolution is still not perfectly 
unitary for 6 = 0.05). Note also that the pattern 

in some regions is striped while in others it is not, 

a quality characteristic for the transitory regime 
between the striped QCA (see refs. [1, 2]) and the 

"smoother" behavior due to the discretized 

Schr6dinger evolution. For illustration, plates III 
and IV show the two extremes of "QCA-type 

evolution" (plate III) and of "Schr6dinger evolu- 
tion" (plate IV). 

In plate III, the parameters are chosen to be 

very small (8 = 0.01 and E = 0.02) such that the 
Schr6dinger evolution is practically indistinguish- 
able from QCA evolution due to the smallness of 
E. Moreover, starting measurements at time M = 

250, further measurements are performed not 

continuously but in intervals of AI  = 20. Whereas 
continuous measurement  would produce a 
straight profile of the probability distribution, one 
now observes a slight spreading thereof. 

As we have seen, such a spreading can be 
caused by the CA evolution being non-unitary. 
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Here, however, we observe another cause: the 

relative frequency of measurements different from 

continuous measurements. In principle, by just 

looking at the probability maps and the spreading 

of the profiles, one cannot distinguish between 
the two causes. 

Moreover, there exists a curious feature of 

Schr6dinger-type evolutions as the one presented 

in plate IV, There, the variables are a = 0.25 and 
E = 0.5. At time M = 250 continuous measure- 

ment sets in producing a spreading probability 

profile due to the non-unitarity of the evolution 

rule. Two points are particularly interesting: (1) 
The top part of plate IV, where no measurement 

is performed, looks the same for any Schr6dinger 

evolution for which 6 >> 0. Since the first term on 

the r.h.s, of eq. (6) becomes (1 - iE)  --+ - i E  for 
large E, one can divide the whole equation by E 

(altering just the normalization factor), such that 

the probability profile looks the same for any 
particular choice of E (or of 6, respectively), (2) 

H o w e v e r ,  one  can still get some  in- 
formation out of such Schr6dinger evolution if 
one starts at some time with continuous meas- 
urements: then, the rapidity of the spreading 

probability profile (i.e. the slope of its "edges") 

provides a useful measure for the non-unitarity of 
the CA evolution, i.e. one can obtain additional 

information on CA that looked the same as long 
as no measurements were performed. In fact, this 

property can also be found when applied to QCA 
(see plate I), i.e. it is a property of the "general 

quantum evolution" as described by eq. (3). 

The dependence of the spreading probability 

profile (measured in terms of the slope k of its 

#4 10 -2  

.~ t2-lO -2 

#0 -2 

~- 8 .#0 -3 

~ 6"#0 . ?  

4.#0 -3 

~j 210-3 

6 R~-IIT 

~ So:r0 

/ iR=02 

5 ~0 /5 
Frequency of hfeosurernent a l 

Fig. 2. D e p e n d e n c e  of the sp read ing  probabi l i ty  profi le (mea-  
sured  in t e rms  of the slope k of its edges)  on the choice of the 

f requency of m e a s u r e m e n t s  (p re sen ted  in te rms  of t ime inter-  
vals 4 1 )  for d i f ferent  choices  of a. 

edges) on the choice of the frequency of measure- 

ments (presented in terms of time intervals A I) is 

given for various a in fig. 2. The value of k 1 /d  
is determined by measuring the distance d in 
time steps I from I = M  to the time when the 

probability profile reaches the boundary J = 1 

and J = 120 of the CA. 
For very small (3 and continuous measurement 

(AI  = 1), the slope k is practically zero (Zeno's 
paradox), and is growing towards a constant value 

for larger A 1. The constant value for k is a limit 
reached for all choices of (3 after sufficient long 

time intervals between successive measurements, 

which just means that in these cases the rare 
measurements have practically negligible influ- 
ence on the CA evolution. It is reached for all ~3 

when AI  >_ 10. 

Plate  I. P robab i l i ty  m a p  for a q u a n t u m  mechan ica l  ce l lu la r  a u t o m a t o n  for , 5 -  0.5(1 + i) and one  ini t ial  point  at site J = 60. 

C o n t i n u o u s  m e a s u r e m e n t  sets  in at  " t i m e "  I = 250. 
P la te  II.  P robab i l i ty  m a p  for a ce l lu la r  a u t o m a t o n  r ep re sen t i ng  the d i sc re t ized  Schr6d inger  equa t ion  for 6 = 0.05. Con t inuous  
m e a s u r e m e n t  s ta r t ing  at  I = 250 leads  to the effect due  to Z e n o ' s  paradox:  the probabi l i ty  d i s t r ibu t ion  essent ia l ly  r ema ins  cons tan t  

for al l  l a te r  t imes  1. 
P la te  III .  P robab i l i ty  m a p  for a ce l lu la r  a u t o m a t i o n  r e p r e s e n t i n g  the d iscre t ized  Schr6d inge r  equa t ion  for 6 = 0.01. M e a s u r e m e n t s ,  

s t a r t ing  at  I = 250, are  r e p e a t e d  in in tervals  of a l  = 20. 
Pla te  IV. Same  as p la te  III ,  bu t  wi th  ~5 = 0.25 and con t inuous  m e a s u r e m e n t  af ter  1 = 250. 

In all  four  p la tes  the  " t i m e  axis" I runs  from top  to bo t tom.  
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However ,  if ~ is chosen  to be  large,  the  above  

behav io r  of  growing s lopes  k is reversed .  In  fact,  

for all va lues  ~ > { 2 ,  ident ica l  behav io r  is ob-  

served:  the  la rger  A I  becomes ,  the  smal le r  is the  

value  for  the  s lope  k of  the  sp read ing  p robab i l i ty  

profi les,  finally merg ing  into the  cons tan t  value  

m e n t i o n e d  above.  This  is in acco rdance  with  the  

fact tha t  ~ >_ ~ -  descr ibes  the  Q C A  reg ime  which 

can def ini te ly  be  classif ied as non-un i t a ry  [1, 2]. 

Final ly ,  we want  to po in t  out  a consequence  of  

this  s tudy of  Z e n o ' s  p a r a d o x  in q u a n t u m  mechan-  

ical CA:  the  d e g r e e  of  non-un i t a r i ty  and  the  

f requency  of  consecut ive  m e a s u r e m e n t s  a re  ope r -  

a t ional ly  indis t inguishable .  This  resul ts  f rom the 

finite r e so lu t ion  t ime of  any poss ib le  ser ies  of  

" c o n t i n u o u s  m e a s u r e m e n t s " .  In  o the r  words,  a 

per fec t ly  un i ta ry  evolu t ion  is an idea l i za t ion  which 

canno t  be  conf i rmed  via m e a s u r e m e n t  by any 

o p e r a t i o n a l  p rocedure .  The  p robab i l i ty  maps  of  

q u a n t u m  mechan ica l  ce l lu la r  a u t o m a t a  as pre-  

s en ted  he re  p rov ide  a pa r t i cu la r ly  c lear  and  di- 

rect  d e m o n s t r a t i o n  of  this q u a n t u m  mechan ica l  

fact. 
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