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Ordinary interferometry employs beams of particles -- photons, elect-
rons, neutrons, and possible other particles —-- but the phenomena which it
studies arise when two amplitudes associated with a single particle combine
at a locus. When the single particle is characterized by a quantum state,
the two amplitudes have a definite phase relation. The variation of the re-
lative phase as one or more parameters vary gives rise to the familiar inter-
ferometric "fringe'" pattern, which characteristically is sinusoidal.

The phenomena of two-particle interferometry also arise from the com-
bination of two amplitudes with a definite phase relation. The radical in-
novation is the employment of beams of two-particle systems, with each pair
in an "entangled" state, that is, a state which cannot be expressed as a
simple product of quantum states of the two particles separately. That
quantum mechanics permits in principle the existence of pairs of spatially
separated particles in entangled states has been known at least since the
classical paper of Einstein, Podolsky, and Rosen (1935), and the actual
existence of such pairs has been known since the analysis by Bohm and Aha-
ronov (1957) of the experiment of Wu and Shaknov (1950). It is only in the
last five years, however, that beams of entangled two-particle systems
have been subjected to the tradit}onal interferometric techniques of split-
ting, directing, and combination.

In this lecture we shall analyze a schematic arrangement (Fig. 1) to
show that when the particle pairs are appropriately prepared, then quantum
mechanics predicts two-particle interference fringes and predicts at the
same time the non-occurrence of single-particle fringes. We shall then
illustrate the experimental potentialities of two-particle interferometry
by showing how this arrangement makes possible a test of Bell's Inequality
without polarization analysis.
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Fig. 1. An arrangement for two-particle in-
terferometry with variable phase shif-
ters.

In the arrangement of Fig. 1 an ensemble of particle pairs is emitted
from the source S into the beams A,B,C,D, each pair in the ensemble being in
the entangled quantum state

_1
[v> = 275 (a> |C>, + D> [B>). 1)

This state describes a coherent superposition of two distinct pairs of cor-
related paths for particles 1 and 2. In one of these, particle 1 enters beam
A and is reflected from mirror M, to phase shifter @, en route to beam split-
ter Hy, from which it proceeds either into the upper channel U, or the lower
channel Lj; while particle 2 enters beam C and is reflected from mirror M
to beam splitter H,, from which it proceeds either into the upper channel

U, or the lower channel L. In the other pair of correlated paths particle

1 enters beam D and proceeds to U, or L. via mirror M. and H , while particle
2 enters beam B and proceeds to U, or L, via mirror M_, phase shifter ¢2,

and H,. The beams A,B,C,D are assumed t0 be in a sing%e plane, and their
directions ensure momentum conservation (i.e., the sum of the momenta of
particles 1 and 2 in A and C respectively equals the sum of the momenta of
particles 1 and 2 in D and B respectively). We wish to calculate the proba-
bilities that the two particles will jointly enter each of the four possible
pairs of exit channels: (U;,U,), (Ul’LZ)’ (LI’UZ)’ and (Ll’LZ)' Quantum me-
chanically each of these probagilities is expressed as the absolute square

of a total probability amplitude, for instance,

2
By(Uy5U,, (81,8, = |A,(U,0,10,,0,) 7, &)

where the dependence of this probability upon the initial quantum state

and upon the variable phase shifters @] and ¢y has been indicated explicitly.
There are two contributions to the probability amplitude Ay: one comes from
particle 1 entering beam A and eventually being reflected from Hj, while par-
ticle 2 enters beam C and eventually is transmitted through Hp; whereas the
other comes from particle 1 entering beam D and eventually being transmitted
through Hj, while particle 2 enters beam B and is reflected from Hp. In the
first contribution particle 1 encounters the phase shifter @1, and in the
second particle 2 encounters the phase shifter Qz. We need to calculate the
relative phase of these two contributions.

A necessary preliminary to this calculation is the derivation of an eq-
uation governing the phase relations of reflected and transmitted rays from
a lossless beam-splitter, when two rays are incident symmetrically upon its
two faces, as indicated in Fig. 2. The rays correspond to quantum states
of definite linear momentum and are denoted by |I> and |[J> respectively. If
the beam-splitter is symmetric, the moduli of the reflected and the trans-
mitted output from each incident ray are equal. Let |I'> denote the total
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Fig. 2. Incident rays [1>, and |J'> reflected and
transmitted from a symmetric, lossless
beam-splitter.

output state from incident |I>, and |3'> denote the total output state from
incident iJ>. Following Zeilinger (1981) we use losslessness to counect out-
put to input by a unitary operator U and use the symmetries to write

[1'> = 2‘%(eit[1> + eirlJ>) = gl1>, (3a)

3> 2‘%(eir'|1> + eit“J>) = UlJy», (3b)

where the real numbers v and r' are the phase shifts due to reflection, and
the real numbers t and t' are the phase shifts due to transmission through
the beam-splitter. Because of the orthogonality of ]I> and ]J> and unitar-
ity, |I'> and |J'> are orthogonal, and hence

0 = <1'[3'> = petT'TE) 4 A(ET -1y 4)
so that
r' ~t=t' -1 + n(mod 2m). (5)

We now return to Fig. 1 in order to calculate the probability amplitude
Aw(Ul’U2‘®1’¢2)- Let r} and t) be the phase shifts of Eq. (3a) associated
with reflection and transmission of the ray incident upon beam-splitter Hj
from below, and ry' and t;' be the phase shifts of Eq. (3b) associated with
reflection and transmission of the ray incident upon Hj from above. Let
rp,tp,rp',ty" have analogous meanings for beam-splitter Hp. Let sj be the
phase change associated with the upper path of particle 1 from S to Hjp,
omitting @#;, and s]' be the phase change associated with the lower path, via
beam D; likewise, let s» be the phase change associated with the upper path
of particle 2 from S to Hy, omitting Pp, and sp' the phase change associated
with the lower path, via beam C. Finally we use the letters @ and @7 not
only to designate the apparatus used for variable phase shifting, but also
for the amounts of these phase shifts -- an ambiguity of notation which will
cause no confusion. Using Egqs. (3a) and (3b) and collecting all these
phases we obtain

- 2—% . ] '
Aw(Ul’UZIQI’QZ) =5 [expl(sl+ﬂl+r1+sz +t, )+
expi(sl'+t1'+52+¢2+r2)]. (6)

Hence,

1]

B, (U0, [0),8,) = 1/4[1 + cos(B; - 0, + W], -

where w is a total fixed phase shift, independent of the variable phase
shifts ¢l and @2, specifically,

'—-g,~r,. (8)

= ' t L
w s,+r, +s, +t t1 27Ty
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Likewise,
Pw(Ul,L2|®1,¢z) = }[1 + cos(f1 - 02 + w')], (9)

where

w' = sytrytsy'+ro'-sy' -ty -sy-ty, (10)
and expressions similar to Egqs. (7) and (9) can be given for Pw(Ll,U2|¢1,¢2)
Pw(LlaL21¢1»¢2)- In short, the probability of joint entrance of particles

1 and 2 into any of the four possible pairs of channels depends sinusoidally
upon the difference $1-Po of the variable phase shifts. Thus quantum mechan-
ics predicts two-particle interference fringes in the experimental arrange-
ment that has been described. What is extraordinary is that there are no
one-particle interference fringes in this arrangement, as one can see by
adding Eqs. (7) and (9) to obtain the probability that particle 1 will enter
channel Uj, regardless of the behavior of particle 2:

Py (UL [01,02) = Py(U1,U2[01,02) + Py(U1,L2[01,02) =
} + cos(fy - @y + w) + cos(Py - B +w') =}, (11)

because by Egs. (8), (10), and (5),

A\l

w' = w+ (ro'-ty-to'ry) = w + m(mod 2m). (12)

In fact, no matter what the values are of the variable phase shifts §] and
§o, the single-particle probabilities are the same, namely 3. This result is
at first very surprising, not only because of the sinusoidal behavior of

the two-particle probabilities but also because in the arrangement of Fig. 1
each of the particles 1 and 2 seems to be subjected separately to a Mach-
Zehnder interferometric experiment.

The quantum mechanical explanation for the absence of single-particle
interference fringes is obtained by returning to the entangled state of Eq.
(1) and inquiring what it implies about the state of particle 1 by itself
and the state of particle 2 by itself. Neither 1 nor 2 is in a pure quantum
state, but both can be described by statistical or density operators Wi and
Wy, as discussed, for example, by Beltrametti and Cassinelli (1981), 66, where

W = $(ja><al + |p><d)y, (13)

Wy + 3(|B><B| + |c><C|). (14)

All predictions concerning particle 1 alone, neglecting correlations with
particle 2, can be obtained from Eq. (13) and will be in exact agreement

with those obtained from Eq. (1); and all predictions concerning particle

2 alone can be obtained from Eq. (14) and will agree with Eq. (1). Now W

is the statistical operator that would correctly describe an ensemble, of
which half of the members are in quantum state |A> and half are in quantum
state |D>, though infinitely many other ensembles (so-called "mixtures')

are correctly described by Wj. And likewise, Wy is the statistical operator
that would correctly describe the ensemble of which half are in state

|B> and half are in state |c>. Of course, neither of these ensembles would
exhibit interference fringes, since each particle in each ensemble travels
from source to output chanmel by only one path. Hence, neither ensemble
takes advantage of the Mach-Zehnder interferometer to bring together con-
tributions by two different paths, with definite phase relations, as required
for single-particle interference fringes. Another way to put the matter

is to say that the entangled state of Eq. (1) shows a definite phase relation
between two two-particle states, namely |A>1|C>2 and |D>; |B>2,
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but no definite phase relations between single-particle states.

An obvious question is how one can know that the quantum state of a
pair of particles emerging from the source has the form of Eq. (l). There
are two ways to answer this question, one hard and one easy. The hard way
is to describe quantum mechanically the process which gives birth to the
two-particle pair and show that the sresulting quantum state of !+2 has the
desired form. The (relatively) easy way is to do two-particle interferome-
try, in order to see whether two-particle interference fringes are exhibited,
for it is straightforward to show that if the quantum state of each pair
emerging from the source is a product of single-particle states, then the
two-particle fringe behavior of Eqs. (7) and (9) will not be exhibited. So
far, the only realizations of two-particle interferometry have used pairs
of photons groduced by the interaction of single photons with an appropri-
ate crystalt, and in these experiments the observation of two-particle in-
terference fringes provides decisive evidence for the entangled state of
the emerging two-photon system.

At the conclusion of the lecture "An Exposition of Bell's Theorem" in
this volume it was noted that there is no intrinsic reason why a polariza-
tion experiment is necessary for the purpose of testing Bell's Inequality.
Indeed, the arrangement of Fig. 1 of the present lecture is a special case
of the schematic arrangement of Fig. 1 of that lecture and can be used to
test an Inequality, when the following identifications are made: the out-
comes of analysis of particle 1 are passage into channels Uj and Ly, and
the conventional values sy assigned to these two outcomes are 1 and -1 res-
pectively; likewise the outcomes of analysis of particle 2 are passage into
channels Up and Ly, and the values tj assigned to these are 1 and -1 res-
pectively; and the variable parameters a and b are taken to be the variable
phase shifts @] and @. Then Inequality (4) of "An Exposition of Bell's
Theorem" can be rewritten as

~25Ey(91,05) + Eu(01,0%) + Eu(07,0)) - Ey(87,05) <2. (15)
1:72 1072 1-72 2

The quantum mechanical expectation value of the products of outcomes, when
the variable phase shifts are @ and @y, is

+

EW(QI’QZ) = Pw(Ul’Uzlﬁl’gz)'l + Pw(Ul,Lzlwlxwz)'(_l)

Py(LyUp|0158,) - (-1) + Py(Ly,Ly[0;,8,) 1
b1 + cos(P) - @y + w1 + E[1 - cos(By - B, + w)]-(-1)
+ 11 = cos(Py - @5 + w1 (-1) + #[1 + cos(@) - By + w)]-1
= cos(f] - 8, + w). (16)

Now choose the variable phase shifts as follows:

P1 = im, By = fvtw, B) = 0, 9y = (3n/4)+w. (16)
Then,

cos(Bj-By+w) = cos(B{-Ph+w) - cos(B]-Bi+w) = - cos(Py-B5+w)

= 0.707, (17)
and

Ey(B],05) + Ey(8],0%) + Ey(@],85) - Ey(8Y,03) = 2.828, (18)



in disaccord with Inequality (15). The quantity w which enters into the
choice of the variable phase shifts in Eq. (16) is determinable experiment-
ally, by varying one or the other of ¢ and ¢_until the joint probability
for photon 1 to enter U, and photon 2 “to ent&r U, becomes 0, and then using
Eq. (7).

As discussed in "An Exposition of Bell's Theorem,” the detection loop-
hole can be blocked if sufficiently efficient photodetectors are developed.
It may be easier to block this loophole in the experimental arrangement of
Fig. 1, which is based upon the linear momentum correlation of the two pho-
tons, than in a polarization correlation experiment, because in the latter
there are two competing demands on the efficiency of the apparatus: both the
polarization analyzers and the photodetectors must be sufficiently efficient,
and these demands are best fulfilled in different energy ranges of the
photons.

In order to achiéve a test of Bell's Inequality as decisive as that of
Aspect et al. (1982), it would be necessary to vary the phase shifts ¢
and $_ very rapidly, in time intervals of the order of 10 nanoseconds.
1t is% of course, very difficult to satisfy this desideratum experimentally,
but in principle it is possible, either by using acousto-optical switches,

like those of Aspect et al., or by electro-optical devices.

Quite apart from the potentiality of our proposal for achieving im-
provements over previous tests of Bell's Inequalities, it may be pedagogi-
cally valuable, The proposed arrangement is simpler than that of the polari-
zation correlation experiments, and opens the possibility of performing a
test of Bell's Inequality as a demonstration in an undergraduate class. Fur~
thermore, the demonstration of two-photon interference fringes in the ab-
sénce of one-photon fringes would be a vivid illustration of quantum mecha-
nical nonlocality.

FOOTNOTES

1Two—particle interferometry using pairs of photons produced by para-
metric down-conversion was reported by Ghosh and Mandel (1987), Hong, Ou,
and Mandel (1987), Ou and Mandel (1988a) and (1988b), Alley and Shih (1986),
and Shih and Alley (1388). The last three of these references report tests
of Bell's Inmequality, but in these tests quarter wave plates are introduced
into the beams for the purpose of transforming momentum correlation into po-
larization correlation, In the proposal of the present lecture, which was
briefly mentioned in Horne, Shimony, and Zeilinger (1989) and will be deve-
loped in more detail in a later paper by us, polarization correlation is
completely avoided. Two-particle interferometry using pairs of photons pro-
duced in positronium annihilation was proposed by Horne and Zeilinger (1985),
(1986), and (1988), but there are great obstacles in the way of realizing
their proposal. Rarity and Tapster (1989) have also proposed a test of Bell's
Inequality without polarization analysis, using the momentum correlation
of photon pairs produced by parametric down-conversion,and had already ob-
tained preliminary results by July, 1989.
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