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For cellular automaton machines getting increasingly smaller in size, a regime will be entered where effects due to matter 
waves may become dominant. Studying the evolution of one-dimensional and locally interacting cellular automata 
governed by generalized quantum mechanical rules, we discuss irreversibility as it appears in the evolution of structures in 
quantum cellular automata. 

I. Introduction 

Cellular Automata (CA's) are n-dimensional 
arrays whose evolution is given by rules connect- 
ing the values of the individual sites of the arrays 
at various times with each other [1]. For cellular 
automata getting increasingly smaller in size, a 
regime will be entered where quantum effects 
cannot be neglected. Ultimately, such effects 
may very well be dominant [2]. Quantum mech- 
anically this fact is described by introducing 
probability amplitudes implying that one will not 
be able to know for certainty whether the value 
at a given site is 0 or 1 at a given instant of time. 

This implies that questions on the foundations 
of quantum theory, such as the quantum mech- 
anical measurement process or the transition 
from microscopic to macroscopic, or from re- 
versible to irreversible physical processes, re- 
spectively, will enter the domain of cellular au- 
tomata research. 

Such a procedure, besides being of a fun- 
damental interest, should also be of significance 
for the problem of understanding the impact of 
quantum physics on computer operation. Not- 
withstanding the fact that today no accepted 
view of computing in the quantum domain exists, 
this may be implied by the equivalence of certain 
classes of cellular automata to Turing machines 
[31. 

One way to arrive at a quantum cellular au- 
tomaton (QCA) is to attribute some complex 
number cil to each site of the cellular automaton 
and to construct transition rules in such a way 
that superposition of probability amplitudes is 
permitted. For simplicity, we study the evolution 
of one-dimensional cellular automata and we 
focus on strictly local (i.e. nearest neighbor) 
interaction. 

Approximating the unitary evolution operator 
U by the first order term of its expansion, 

U = e -iHt/h ~ 1 - iHt /h ,  

and introducing periodical boundary conditions, 
the Hamiltonian becomes essentially 

I 0, 0, 0 0 
H =  6* 0 6 (1) 

6" O, 6 . 
• O . " 

Also, we decided to normalize the one-dimen- 
sional QCA at any given time• This procedure, 
though seemingly reasonable from the quantum 
mechanical viewpoint, would have also to be 
relaxed eventually in the transition between 
quantum and classical CA's, because the latter 
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are not normalized (see [1]). It is important to 
note that eq. (1) represents a unitary evolution 
for small values of ~ only. For larger values of tS, 
other matrix elements farther off the diagonal 
would have to be nonzero in a very specific way 
to preserve unitarity. 

2. Some results 

The results are presented in the form of prob- 
ability maps, i.e. we plot the " temporal"  evolu- 
tion of one-dimensional quantum cellular auto- 
mata in terms of the normalized probability val- 
ues PH = cHctJ  for each site J at each time step I. 
Different shades of grey represent different 
probabilities. 

We have studied the evolution of quantum 
cellular automata as a function of the size of the 
off-diagonal elements ~ in the Hamiltonian. That 
is, we have investigated the dependence of the 
resulting patterns on the relative weighing of the 
nearest neighbor's contributions [4]. 

In the plots of the probability maps the num- 
ber of pixels is 120 × 532 for one image. Gener- 
ally, we vary the size of the off-diagonal contri- 
butions 6 =/~c(1 + i) by varying 8c and we vary 
the initial point configurations. 

To show a characteristic result, fig. 1 presents 

an example with one initial site of non-zero 
amplitude. We plot a quantum cellular auto- 
maton with t~ c = 20 and one initial point. The 
ellipses typical for this range of ~c gradually 
flatten and eventually form "plane-wave sur- 
faces." Other observed features of the probabili- 
ty maps are striped wave-like patterns, interfer- 
ence patterns, ripples, and the like. Generally, 
probability maps with n/> 2 initial points exhibit 
the following properties: 
i) high sensitivity to the number (odd versus 

even) of zero-value sites between non-zero 
initial points, 

ii) high sensitivity to slight variations of the 
values of individual initial points, 

iii) rapid stabilization of the pattern structure for 
symmetric initial point configurations. 

Now we shortly discuss global pattern forma- 
tion as caused by the local evolution rules ap- 
plied. For t~c ~> 1, three "phases" of global evolu- 
tion can be clearly distinguished: 

1) a mostly complex development from the 
initial states to the first appearance of recog- 
nizable large-scale periodical structures, 

2) strictly periodical "ellipse-like" structures, 
3a) an "infinite-time state" which represents the 

stable final state resembling a plane-wave 
pattern, or 

3b) a stable large-scale periodic structure. 

Fig. 1. Quantum cellular automaton with 8 c = 20 and one initial point. The ellipses typical for this range of 8c gradually flatten 
with time and eventually form "plane wave surfaces". The time axis runs from left to right. 
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3. Irreversibility 

Suppose one begins QCA evolution at time I 
using the evolution rule 

1 
Cl+l,  J -- g t ~  (Cl, J q - i ~ c , . j _ ,  + i6",.,+,), (2) 

i.e. using the corresponding evolution operator 

1 U=~ 
" ' "'1" " i6" 

i6 1 i6" 
i6 1 

0 

0 

i6" 
1 i~5" 
i6 1 

(3) 

If at time I + 1 one applies the Hermitian conju- 
gate rule of [2], one obtains 

• " ' " " " t 1 + 2 8 8 "  0 8 *2 " 0  . . .  

1 " 0 1 + 286"  0 8 *2 

U ' U = ~  "62 0 1 + 2 6 6 "  O.  ' 

" " 0 . . .  82 . O. 1 + 2 8 8 "  
• . " .  . 

1 0 

1 

1 (4) 

1 

0 

such that only for small values of 8 the "inverted 
value" t?t. J becomes 

?, ,1  = c , _ = , ,  . ( 5 )  

Thus, for non-negligible values of 8, the evolu- 
tion becomes non-unitary. That is, the off- 
diagonal terms in (4) begin to dominate the 
QCA evolution which has thereby become ir- 
reversible. We therefore conclude that the quan- 
tization of state space (under maintainance of 
continuous phase relations) implies that for large 

enough values of the "mixing parameter" 8 
strictly local unitary evolution becomes imposs- 
ible. To arrive at unitary, reversible quantum 
mechanics one has to relax the locality condition. 
In contrast, relaxing unitarity as done here pro- 
vides a possible mechanism for a transition to 
macroscopic irreversibility. 

How does this finding relate to other notions 
of irreversibility in the context of the relation 
between quantum mechanics and macroscopic 
physics? In answering this question, we restrict 
ourselves to a comparison of our non-unitary 
QCA's with work done by George, Prigogine, 
and Rosenfeld (GPR) on "The Macroscopic 
Level of Quantum Mechanics" [5]. The latter 
discusses another possible model for the transi- 
tion from quantum mechanical to macroscopic 
irreversible descriptions of a physical system• 

GPR describe the temporal evolution of quan- 
tum systems via a Liouville equation 

1 H ip(t) = ~[ , p(t)] (6) 

where the density operator 

p(t) = ~ l~(t)> < 4,(t)l 

is as usual composed of states I~O(t)) in Hilbert 
space 9(. Since the density operator describes 
both density distributions within pure states and 
correlations between pairs of states, GPR view 
p(t) as being a function which describes system 
evolution in the product space 9( x 9(which they 
call "superspace". Then the solution of (6) be- 
comes 

p(t) = e iC~p(0) 

1 H with L~-{ x ~ - ~ x H }  (7) 

where the time evolution superoperator T(t)= 
exp ( -  iLt) can be factorized into 

T(t) = e - i L t  = e - i H t / ~  e +iHt/t' ( 8 )  

Thus the Liouville superoperator is self-adjoint, 
and the time evolution superoperator is unitary• 
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The important ansatz to combine quantum 
mechanical and macroscopic description is the 
proposal by GPR to decompose the density 
superoperator into 

p( t )=po( t )+pc( t ) ,  

with 

po(t) = Pop(t),  pc(t) = Pep(t).  (9) 

The density p0(t) represents the average distribu- 
tion of states of the system, while the supervec- 
tor pc(t) describes the effects of fluctuating corre- 
lations among these states. One thus arrives at 
an equivalent description both at the quantum 
mechanical and at the macroscopic level, where 
in both cases a corresponding Liouville equation 
is in operation. 

In the context of our considerations it is im- 
portant to note that the GPR model introduces 
an additional assumption (i.e. not inherent in the 
usual quantum mechanical formalism) which the 
authors call the "condition of dissipativity". In 
doing so, the possible appearance of (thermo- 
dynamic) irreversibility on the macroscopic level 
is traced back to a mixing of correlations on the 
microscopic level as described by pc(t). In such a 
case, initial phase relations between the state 
vectors may eventually be "smeared out" as an 
effect of the assumed fluctuations on the micros- 
copic level. 

Comparing this model of GPR with our ir- 
reversible quantum mechanical CA's, one finds 
that our evolution operator (3), if interpreted as 
a projection operator, does fulfil the condition of 
adjoint symmetry, but not the condition of idem- 
potency; two conditions however, which would 
have to be fulfilled simultaneously if our descrip- 
tion were a description based on projection 
operators in superspace. 

One can clearly see a certain complementarity 
between the ansatz using quantum mechanical 
CA's and that of ref. [5]. The GPR approach 
introduces as additional assumption the "condi- 
tion of dissipativity", i.e. the "smearing out" of 
phase correlations for long times (i.e. for the 
macroscopic domain), while the states themsel- 

ves always obey a Liouville equation implying, 
among other features, also nonlocality. Our an- 
satz in turn is characterized by the additional 
assumption of a discretization of state space 
under operation of local rules, while the phase 
correlations are maintained for all times. The 
mixing of states in our case is a consequence of 
the applied evolution rule for the QCA. 

Therefore, despite some similarities, the two 
approaches to irreversibility as discussed here 
are fundamentally different. However, these dif- 
ferences are easily explained since they follow 
from the different additional assumptions intro- 
duced. The common point of departure for both 
models is irreversibility considered as the result 
of the mixing of correlations. How this mixing 
comes into being is a question of the additional 
assumptions introduced into the quantum mech- 
anical description. Which of the two approaches 
is more relevant for the question of quantum 
computation is certainly open. From the point of 
view of a practical realization of a quantum 
apparatus, we point out that our model has the 
distinct advantage of its time evolution being 
described within the system itself as opposed to 
the practically unrealizable superspace system. 
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