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NEUTRON SPIN-PENDELLOSUNG RESONANCE 

Michael A. HORNE*,  K.D. FINKELSTEIN,  C.G. SHULL,  Anton ZEILINGER** and 
Herbert J. BERNSTEIN*** 
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

A novel resonant enhancement of the spin-orbit scattering of thermal neutrons in a perfect crystal is predicted. The 
effect occurs when the Larmor precession distance for the neutron in an externally applied magnetic field coincides with 
the pendellfsung distance in the crystal. The potential is described, the wave functions are derived, and an experiment is 
proposed. 

1. Introduction 

As a neutron moves through matter, its mag- 
netic moment senses the electric charges via the 
v x E magnetic field (spin-orbit interaction). 
This electromagnetic interaction scatters the 
neutron wave function, but for a thermal neut- 
ron the scattered intensity per atom is four or- 
ders smaller than the strong-interaction scatter- 
ing by the nucleus and hence not easily observed 
[1]. However, we show here that when the mat- 
ter is a crystal immersed in a suitable external 
magnetic field and the neutron wave function 
fulfills Bragg's condition, the electromagnetic 
scattering is dramatically enhanced and becomes 
comparable to the nuclear scattering. The en- 
hancement is a resonant effect which occurs 
when the Larmor precession distance in the ex- 
ternal field coincides with the pendell6sung dis- 
tance in the crystal [2]. Hence we call the effect 
neutron spin-pendell6sung resonance. 

Fig. 1 depicts the arrangement under conside- 
ration. The plane z = 0 is the entrance surface of 
a perfect crystal; the region z > 0 is the crystal 
and the region z < 0 is empty. The particular set 
of crystal planes of interest is also indicated. 
These planes are perpendicular to both the plane 
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Fig. I. The crystal position, the lattice planes, the B field, 
the coordinates, and the two spin states used in our dis- 
cussion. 

of the figure and the x axis and have spacing d. 
The adjustable strength external magnetic field B 
is parallel to z as indicated [3]. The choice of 
basis states for the spin is also shown: The "up"  
spin state U is out of the plane of the figure and 
the "down" spin state D is into the plane. Final- 
ly, we will be considering a neutron whose 
momentum lies in the plane of the figure, i.e., 
the plane of the figure is the scattering plane of 
the Bragg diffraction process. 

2. Potential 

The total potential considered here consists of 
three parts: the nuclear, the spin-orbit and the 
potential arising from the external magnetic 
field. 

The nuclear interaction potential V N of a neut- 
ron with a single nucleus is usually described as 
simply a delta-function spike with an adjustable 
parameter to be determined by experiment. This 
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description is due to Fermi, who wrote the factor 
multiplying the delta function as (2~rh2/rn)b so 
that, then, the adjustable parameter is the scat- 
tering length, b. Experiment reveals that b ~- 
10-~Sm and that both positive and negative val- 
ues occur. Note that the potential function for a 
single nucleus (i.e., delta) is an even function 
about the position of the nucleus. 

To describe the complete nuclear potential 
seen by a neutron in a perfect crystal, one initial- 
ly imagines a periodic array of Fermi spikes, one 
at each nucleus. In the theory of crystal diffrac- 
tion, this potential is first Fourier-expanded over 
all reciprocal lattice vectors and then inserted in 
Schr6dinger's equation. When one is studying 
diffraction from a particular set of lattice planes, 
as we are, all coefficients in the Fourier series 
are ignored except the mean potential V 0 and a 
coefficient V 1 associated with the particular set of 
planes. Then the nuclear interaction potential V N 
is effectively just 

VN = V0 + 21,', cos(Gx).  (1) 

Here, the factor 2 has been inserted for con- 
venience in later expressions. The origin of the x 
axis has been placed at one of the crystal planes 
(hence the even cosine function) and G = 2"rr/d. 
The values of V 0 and V 1 can be calculated from 
the structure of the crystal, the temperature, and 
b. To summarize, the array of Fermi spikes has 
been replaced by a simple corrugation potential. 

The existence of the neutron magnetic mo- 
ment implies [4] that the spatially even, spin- 
independent nuclear potential must be augmen- 
ted by a spatially odd and spin-dependent elec- 
tromagnetic potential. This potential arises be- 
cause, as the neutron passes the nucleus, its 
magnetic moment senses the radial electric field 
of the nucleus via the v × E magnetic field (spin- 
orbit interaction). The oddness of this spin-orbit 
potential Vso follows from the fact that, since E 
is radial, v × E just to the right of the nucleus is 
into the plane of fig. 1 and just to the left it is out 
of the plane. 

This picture of the spin-orbit potential Vso 
(i.e., spatially odd and with a sign change upon 
spin reversal from U to D) applies not only to a 

bare nucleus but also to a complete atom and 
hence to each site of the crystal array. If one is 
interested in Bragg diffraction from a particular 
set of planes, one again retains only the lowest 
order Fourier components. Hence one can write 
simply 

+ 2V 2 sin(Gx), for spin state U ,  
Vso = [ - 2 V  2 sin(Gx), for spin state D . (2) 

Again, the factor 2 is included for convenience 
later. The required spatial oddness of the inter- 
action is reflected in the use of sine instead of 
cosine. For a neutron of specified energy, and a 
particular reflection in a particular crystal, the 
value of V 2 may be calculated from the magnetic 
moment and speed of the neutron, and from the 
total E(r) field of the atomic nucleus and elec- 
trons. (The electronic contribution to E(r) may 
be obtained from either quantum theoretical val- 
ues or those effectively determined by X-ray 
diffraction data which reflect the electron charge 
distribution of the atom). For a thermal neutron 
in silicon, V 2 = 10-21,'1. 

Finally, an externally produced homogeneous 
magnetic field contributes the external potential 

+V3, for spin state along B ,  
Vext = -V3, for spin state along - B  . (3) 

Here V 3 = / z B ,  /z being the neutron magnetic 
moment. Note that the spin states appearing in 
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Fig 2. The three potentials are the nuclear potential Vs and 
the spin-orbi t  potential Vso of the crystal, and the external 
potential V~x t due to the applied magnetic field. The mag- 
nitudes shown for V N and Vso are for a typical reflection in 
silicon. The Vex t is of course adjustable and the Vso and V~ t 
as shown are for specific spin states (See eqs. (2) and (3)). 
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(3) are n o t  the base states U and D. Fig. 2 
depicts the three parts of the total potential. 

running ( K x  = + G / 2 )  and left-running (K x = 
- G / 2 )  waves of equal amplitude. Thus, without 
loss of generality, 

3. Wave functions X v ( x  ) = s i n [ ( G x / 2 )  - (0/2)] ,  (9) 

We will now construct a set of four base states 
suitable for describing any [5] Bragg diffraction 
experiment in the total potential 

V ~ -  VN q- Vso-~- Vext . (4) 

Let qt(x, z, t) denote one of the base states 
associated with the potential (4). We assume that 
this ~ f a c t o r s ,  describes a neutron of de f in i t e  

e n e r g y  E ,  and describes a neutron of de f in i t e  

z - m o m e n t u m .  Hence, we write 

g t ( x ,  z ,  t )  = X ( x ) Z ( z )  T ( t )  , (5) 

X o ( x  ) = s i n [ ( G x / 2 )  - (0 ' /2) ] ,  (10) 

where 0 and 0' are phases to be determined. The 
left-right/up-down s y m m e t r i e s  in figs. 1 and 2 
imply that, if the X U standing wave is displaced 
to one side of the origin, the X o wave must be 
displaced equally far to the other side. Hence, 

O' = - 0 .  (11) 

To determine the phases ~b and 0, we appeal 
explicitly to the potential (4) via the following 
e x t r e m u m  p r i n c i p l e :  

T ( t )  = e x p [ - i E t / h ]  , (6) 

Z ( z )  = e x p [ i K z z  ] . (7) 

The phases 4, and 0 appearing in X are to be 
adjusted so that the expectation value of the 
total potential (V)  x is an extremum. 

Here E is considered a single known value, but 
the allowed values of Kz are unknown and will 
be determined below, after the X ( x )  functions 
have been first determined. 

The wave function X must be a s p i n o r .  T h e  

most general x-dependent spinor is a superposi- 
tion of the base spinors U and D, 

X ( x )  = X u ( x ) U  + e x p [ i q b ] X D ( X ) D  , (8) 

where X U and X o are arbitrary functions of x 
and a relative phase ~b has been explicitly exhi- 
bited for convenience. The p h y s i c s  o f  B r a g g  

d i f f r a c t i o n  dictates that X v and X o each must be 
a standing wave, i.e., a superposition of right- 

One justification for this principle stems from the 
fact that it correctly yields already known base 
states when any one (two) of V1, V2, V 3 is (are) 
zero. Applying the principle to the general case, 
we find ( V ) x  has extrema at f o u r  points in the 
region 0 < t h < 2 r r ,  0 < 0 < 2 ¢ r ,  of the (~b, 0) 
phase plane. Thus the system has f o u r  natural 
base states; call them 4'i, 4'2, 4'3, and 4'4. These 
are listed in table I along with their associated 
phases and expectation values for the potential. 

Finally, the Kz's appearing in (7) are found 
from the e n e r g y  c o n s t r a i n t :  

K s = + [ ( 2 m / h Z ) ( E  - ( V ) x )  - (G/2)211/2 " 
(12) 

Table I 
Some phases and expectation values used in constructing the four base states. 

Base state q, Phase ~b Phase 0 Expectation value ( V ) x  

~ d~ = 0 01 = tan-~[V2/(V~ + I,'3) ] (V)x~ = V 0 - [(V~ + V3) z + V~2] ~/2 
~2 dp 2 = Ir 02 = tan-~[V2/(V~ - I,'3)] ( V )  x 2 = V 0 - [(I,'1 - V3) 2 + 1/'22] t/2 
4,3 4'3 = ~ o3 = o2 + ~ ( v )x3  = Vo + [(v, - v3) 2 + v~2] 1'2 
q,, 4,,=0 0,=0,+~ ( V ) x = V o + [ ( v , + v 3 ) 2 + v ~ ]  ~'~ 
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Since the four q,'s have different ( V ) x  , they 
have different K / s ;  call them K~, K2, K3, and 
K4. 

To summarize, the four base states for describ- 
ing Bragg diffraction in the potential (4) are each 
given by (5), together with eqs. (6) through (12) 
and the appropriate phases and expectation val- 
ues in table I. 

4. Proposed experiment 

Illumination of the crystal with a polarized 
Bragg neutron of energy E produces, in general, 
a superposition of qJ l . . ,  q~4 inside the crystal. 
Because of the different values of K 1 . . .  K 4, 
beats occur in the various intensities [6] as a 
function of depth z. This oscillatory character 
survives even with an unpolarized incident beam. 
For example, if an unpolarized beam approaches 
the crystal from, say, left to right ( K  x = G / 2 ) ,  

the total (i.e., no spin analyzer present) intensity 
moving right to left (i.e., the Bragg intensity) at 
depth z is 

I = I[1 - cos(~rz) cos(/.~z) 

+ cos ~7 sin(crz) sin(/xz)],  (13) 

where 2or = K1 - K4, 2Ix = K 2 - K 3 and rl = 
o2-o,. 

In the special case of zero magnetic field (t~ = 
or and rl = 0), eq. (13) reduces to 

1 = 1[1 - cos(2o-z)] (no magnetic field). (14) 

Several years ago, one of us (CGS) observed [7] 
the interference fringes (14), known as pendel- 
16sung fringes. The characteristic distance (pend- 
ell6sung length), A = 2~r/~r, is about 100 I~m in 
silicon. The fringes were displayed by varying 
the incident neutron energy and thereby A. 

Returning to the general expression (13), we 
note the complicated dependence on magnetic 
field strength via o-, Ix, and 9. Fig. 3 shows this 
dependence for three different crystal thicknes- 
ses, selected such that I = 0 at zero field. The 
resonance at V 3 = V 1 is caused by the spin-orbit 
interaction V2; for with V 2 = 0, the resonance is 
not present. The condition for its appearance, 
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Fig. 3. Expected variation in intensity of Bragg diffracted 
radiation as a function of applied magnetic field strength. 
Results are given for three crystal thicknesses: 25, 35, and 50 
pendell6sung length units. Here V 2 = 10-2V1, typical of 
silicon. The intensity has been normalized to the incident 
intensity. 

V 3 = V 1, is that the Larmor precession distance in 
the external field coincides with the pendell6sung 
distance in the crystal. For silicon, the required 
magnetic field is about 6kG,  independent of 
neutron energy. 
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