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We formulate a model of EPR experiments by including variables determining 
whether a photon will be detected or not. 17te resulting deterministie model 
satisfies Bell's original inequality even though it can agree exactly with the quan- 
tum mechanical predictions for the performed experiments. It violates variations of 
the inequality used in the interpretation of the experiments and deduced with the 
help of additional assumptions. 

1. BOHM'S F O R M U L A T I O N  OF THE EPR P A R A D O X  

A physical system M is given (atom, molecule, etc.) decaying into two 
spin-l/2 "particles" ~ and ft. If u s ( + )  and u s ( - )  are the eigenvectors 
corresponding to the eigenvalues + 1 and - t ,  respectively, of the Pauli 
matrix crz(e ) representing the third component of the spin angular momen- 
tum for e; and if us( + ) and uB( - ) are the corresponding eigenvectors of 
the Pauli matrix az(fl) for fl, there are some concrete physical situations in 
which the spin state vector for (c~,/~) must be the "singlet" state vector r/o 
given by 

~o = (1/,/2)[ u~( + ) u~(- ) -  us(- ) u~( + )] (1) 

Four properties of r/o are important in Bohm's formulation of the EPR 
paradox(l~: 

(i) I t  is not  a fac tor izable  vector. 
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(ii) B predicts the result zero for a measurement of  the total squared 
spin o f  the particles ~ and ft. 

(iii) It is rotationally invariant. 

(iv) It predicts opposite results for measurements of  the components 
along ti o f  the spins of  particles ~ and [1, ~ being an arbitrary unit 
vector .  

Another state vector important for the discussion of the EPR paradox 
is the "triplet" state, given by 

,1 = ( 1 / ~ ) E u ~ ( + )  u~( - )  + u~( - )  ue(+)]  (2) 

One can show that q~ shares with r/o the properties (i) and (iv), but 
not the property (iii) since it is not rotationally invariant. Moreover, in 
place of (ii) ~1 has the following property: Any measurement of  the total 
squared spin of  the two particles described by ~1 will give the result 2h 2 
(spin 1). 

By adding and subtracting (1) and (2) one gets: 

u~( + ) u¢( -- ) = ( 1/x/~ ) [r/o + r h ], 
(3) 

u~(-  ) ,~ (+  ) = (1 / , / 2 ) [~o -  ~1 ]. 

Therefore, on invoking the quantum mechanical interpretation of super- 
positions, one concludes that 

Measurements of  the total squared spin on a set of  (c~, [1) pairs 
described as a mixture of  the Jactorizable state vectors (3) will produce 
with equal probability the results 0 and 2h 2. 

Bohm's version of the EPR paradox is based on the Einstein, Podotsky and 
Rosen "reality criterion": "If, without in any way disturbing a system, we 
can predict with certainty (i.e., with probability equal to unity) the value of 
a physical quantity, then there exists an element of reality corresponding to 
this physical quantity." In a slightly modified version, basically due to 
d'Espagnat, ~2~ the paradoxical reasoning goes as follows: 

Consider a large set E of (c~, [1) pairs in the state (1). Measure az(a) at 
time to on all ~'s of a subset E1 of E. If + 1 ( - 1 )  is found, a future (t > to) 
measurement of ez([1 ) will give - I ( + 1 )  with certainty. Using the EPR 
reality criterion, one can assign to all cds of El an element of Ireality 21(22) 
fixing a priori the result - 1 ( +  1) of the a~(fl) measurement. 

But quantum mechanics treats an object [1 with predetermined value 
- 1 ( +  i) of a~(fl) by assigning it the state vector u p ( - ) [ u ~ ( +  )]: This is 
the completeness assumption, according to which every element of physical 
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reality must have a counterpart in a complete physical theory. The strict 
correlation (iv), applied to the z axis, implies then, even for t < to, that E1 
had to be described in spin space with a 5(~50 mixture of the vectors in 
Eq. (3) Excluding that 21(22) are created at a distance by the measurement 
of ~(e), it must be concluded that either 21 o r  2 2 actually belong to all/~'s 
of E. Applying again completeness one concludes, like before, that a 
mixture of the vectors in Eq. (3) applies to all pairs of E. 

But this contradicts at the empirical level the description provided by 
the singlet state in Eq. (1), as was previously shown. One reaches so an 
absurd conclusion (EPR paradox). 

2. THE BOHM-AHARONOV CONCLUSION 

Already the works of Schr6dinger (3) and Furry (4) had evidenced the 
existence of a striking disagreement between the predictions of quantum 
theory and those to be expected on the assumption that a system free from 
dynamical interference can be regarded as possessing independently real 
properties. This conclusion is for some people very difficult to accept and 
can lead to the idea that something could be wrong with the existing 
quantum theory. The first organic examination of an eventual breakdown 
of quantum theory (with immediately negative conclusions) was made by 
Bohm and Aharonov. (5) They recalled that also Einstein had doubts about 
the validity of the quantum predictions in the EPR situation: 

"...Einstein has (in private communication) actually proposed such an 
idea; namely, that the current formulation of the many-body problem 
in quantum mechanics may break down when particles are far enough 
apart." 

Bohm and Aharonov considered the electron-proton annihilation into two 
gamma rays and showed that the produced quantum state is 

10- > = {Ix~> lye> -Jy~> Ixp> }/,,~ (4) 

that is, the zero angular momentum negative parity state, where x and y 
denote orthogonal directions of linear polarizations of photon ~ and 
photon //. Also the latter state, like the singlet state of two spin-l/2 par- 
ticles, is rotationally invariant. This means that each photon is always 
found in a linear polarization state orthogonal to that of the other photon, 
no matter what may be the choice of axes x and y. Bohm and Aharonov 
calculated the ratio R(O)= FI(O)/F2(O), where FI(O ) is the rate of double 
scattering of the two photons through a fixed angle 0, when the planes rr 1 



1144 Selleri and Zeilinger 

and ~2 formed by the lines of motion of the first and the second photon 
respectively (after scattering) with their common original direction of 
motion are perpendicular. F2(O) is the same rate when the planes ~1 and re2 
are parallel. The 10- > state predicts 

(7 - 2 sin 2 0) 2 + 72 
R(O) = 27(7- 2 sin 2 0) (5) 

where 

7 = (ko/k)  + (Wko) 

Here ko is the wave number of the incident photon, k that of the final 
photon, and ko/k can easily be calculated from Compton scattering 
kinematics: For 0 = 82 ° one obtains R(82 °) = 2.85. This figure could not be 
compared directly with the result of the Wu-Shaknov experiment, (6) 
because photons had been detected with a considerable angular spread 
around the "ideal" value of 82 °. To such a concrete situation applied 
instead the prediction 

R = 2.00 

obtained with a suitable angular average of Eq. (5). This agreed very well 
with the experimental results, while Bohm and Aharonov could show that 
the hypothesis of a breakdown of the 10-> state vector with increasing 
distance between the two photons and of its substitution with a mixture of 
factorizable vectors led necessarily to R ~< 1.5. 

These results showed that the Wu Shaknov experiment was well 
explained by the existing quantum theory, but not by any hypothesis 
implying a simple-minded breakdown of quantum theory that could avoid 
the paradox. It would however not be correct to conclude that this 
experimental evidence gives a proof against Einstein's locally realistic 
picture of atomic phenomena, since there are well known local models 
reproducing the quantum-mechanical predictions for experiments of the 
Wu-Shaknov type. (7) 

The evidence found by Bohm and Aharonov is however conclusive 
against what has here been called "a simple-minded" breakdown of quan- 
tum theory, and it is surprising that some authors kept rediscovering this 
idea long after it had been discarded by its proponents. Examples are the 
papers by Jauch, (8) de Broglie, (9) and Piccioni and Mehlhop. (1°) 
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3. QUANTUM PREDICTIONS FOR EPR EXPERIMENTS 

The present section collects well known formulae predicted by quan- 
tum theory for all the physical quantities that can be measured in an EPR 
experiment performed with atomic photon pairs. At first we consider the 
well-known situation in which photon c~(fl) crosses a one-way polarizer 
with axis oriented along direction a or a' (b or b') before entering a detec- 
tor with quantum efficiency t/~(r/~). If the polarizer is taken away from the 
path of the photon, the corresponding situation is denoted by 0% as it is 
traditional to do. 

Single photon probabilities for crossing the polarizer (when present) 
and for detection will be denoted with the letter p(q) for photon e (fi). Joint 
probabilities for transmission and detection of both photons will be 
denoted with the letter D: Thus D(a, b) will be the probability of detecting 
both photons after photon ~(fl) has crossed a polarizer with axis a(b); 
D(a, oo) will be the probability of detecting both photons after a has 
crossed a polarizer with axis a, if no polarizer is present on the trajectory of 
fl; and so on. 

An index ..... will indicate the quantum mechanical predictions: Thus 
Do(a, b) will be the quantum theoretical expression of D(a, b), and so on. 
In experiments with atomic photon pairs the most widely used cascade is 
the (J=0)--* ( J =  1) ~ ( J = 0 )  cascade of calcium. (11) The quantum 
mechanical predictions following from the state 10-)  of the two emitted 
photons, which applies to this case, are 

po(a) = po(a') =1 if8 + r/:~ 

po(OO)=~ 

qo(b)=qo(b')= le~+ tl~ 

qo( °O ) = tln 

for single photon probabilities, and 

Do(a, b)=¼[e+e~+ +e ~ e ~ Fcos 2 ( a - b ) ]  r/~/~ 

(6) 

(7) 

(8) 

(9) 

(10) 

for the joint probability of transmission and detection of both photons. The 
expressions for Do(a, b'), Do(a', b), Do(a', b') can easily be obtained from 
Eq. (10) with minor changes of the arguments a and b. Other joint 
probabilities that have been measured in EPR experiments are 

Do(a  ' o o ) = 1  o¢ (11) ~8 + r/~ r//s 

Do(oo, b)= le~+ tl~tl~ (12) 

Do(D , oo) = r/~r/~ (13) 
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In Eqs. (6), (8), (10), (11) and (12) one has: 

- -  " g ''a- m 

Here e~t(e~) is the transmittance of the polarizer crossed by photon ~ for 
light polarized parallel (perpendicular) to the polarizer axis; and a similar 
notation has been used for the polarizer crossed by photon/~. In Eq. (10), 
the factor F is a function of the angle subtended by the primary lenses and 
represents a depolarization due to noncollinearity of the two photons: In 
practice, F is often rather close to unity. Eq. (10) refers to the ( J = 0 ) ~  
(J = 1 ) ~ (J = 0) cascade. If the photon pair is obtained from a (J = 1 ) -o 
( J=  1)-0 ( J = 0 )  cascade with equal populations in the initial Zeeman 
sublevels and no coherence among them, but the used experimental 
arrangement is otherwise unchanged, then the quantum mechanical predic- 
tions of Eqs. (6)-(13) remain unchanged, the only exception being that F 
becomes - F  in Eq.(10). (12) Some experiments have actually been 
performed with cascades of the ( J=  1 ) ~ (J = 1 ) ~ ( J=  0) type. (13) 

Garuccio and Rapisarda (14) studied an experiment in which a piece of 
calcite, monitored by two detectors put on the ordinary and on the 
extraordinary ray, was used as analyzer for each of the two photons. Of the 
same class are experiments with general two-way analyzers, where two 
orthogonal states of linear polarization are split and sent into two different 
directions. An experiment of this type was actually performed by Aspect 
and collaborators. (15) Every photon can be detected either in the transmit- 
ted beam or in the reflected beam, denoted by _+ respectively. There are 
then four joint probabilities for detection of both photons, and the quan- 
tum mechanical predictions for the (J = 0) ~ ( J=  1) ~ (J = 0) cascade, the 
only one used in practice, are: 

D o ( a + , b + ) = ¼ [ T ~  TZ+ + T ~ _ T ( ~ F c o s 2 ( a - b ) ] t l ~ t l ~ ,  (14) 

D o ( a + , b _ ) = ~ [ T + R ~ - T  ~ R t~ F c o s Z ( a - b ) ]  tl~tl¢ (15) 

D o ( a _ , b + ) = ¼ [ R ~ + T ~ - R  ~ T ~ F c o s Z ( a - b ) ] t l ~ q ~  (16) 

D o ( a _ , b _ ) = ¼ [ R + R ~ +  + R~ R~ V c o s 2 ( a - b ) ] t l ~ r l z  (17) 

where 
T i t • T i " ¢ + = TII + T ~ ,  _ = T I I -  T l 

and 

R'+ = + R!_ = RI - 

(i=o~, [3). The T and R parameters are transmittances defined in the 
following way. There are two prisms, denoted with i = e ,  [t. From each 
prism two beams are emitted, a reflected one and a transmitted one. 
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TII(T±) denotes the prism transmittance along the transmitted path for 
incoming light polarized parallel (perpendicular) to the trans- 
mitted channel polarization plane; 

RN(RI) denotes the prism transmittance along the reflected path for 
incoming light polarized parallel (perpendicular) to the reflected 
channel polarization plane. 

No other probabilities have been measured in experiments with two-way 
polarizers and we will correspondingly limit our considerations to 
Eqs. (14) (17). 

4. LOCAL D E T E R M I N I S T I C  M O D E L S  F O R  EPR E X P E R I M E N T S  

Following an idea that we first developed elsewhere (16/it will next be 
shown that local and deterministic models exist which are capable to 
reproduce exactly the quantum mechanical predictions for detector efficien- 
cies r/, and ~I~ not too high, say below the 0.5 level (this condition is well 
satisfied in all the performed experiments~11'~3)). It is rather obvious that if 
deterministic models of this type exist, also truly probabilistic local models 
should exist with the same basic physical propertyIindistinguishability 
from quantum theory for low enough detector efficiency. In fact the class of 
probabilistic local models is much wider than that of deterministic local 
models, and includes it: Deterministic is a model in which all probabilities 
are certainties (positive certainty ~ probability 1 and negative certainty 
probability 0). 

In our models, four different polarizer directions are considered; two 
for each photon; variables which determine whether a specific photon will 
trigger the detector or not are also included. Each individual photon is 
described by five dichotomic variables, two related to the transmission 
through a one-way polarizer, and three related to the detection in various 
conditions (the extension of the model to two-way polarizers will be made 
in a future section). Therefore every photon pair (c~,/~) is described by a set 
of ten dichotomic variables: 

(s,s ' ,a,a' ,6;t , t ' ,  r, z',a) (18) 

with the first five variables pertaining to photon e and the second five 
variables to photon/3. Each of the ten variables can only be zero or unity, 
and in this consists the deterministic nature of the model. In fact all the 
variables in Eq. (18) could be considered probabilities, and probabilities 
that can assume only the values zero or one are certainties. 
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These dichotomic variables determine the interactions that a given 
photon, c~ or/~, will have with polarizers and detectors. More exactly: 

s =  l ( s ' =  1) determines that photon c~ will traverse its polarizer oriented 
along direction a(a'); 

= l ( a ' =  1) determines that photon ~ will be registered by its detector 
after having crossed a polarizer oriented along direction 
a(a'); 

6 = I determines that photon c~ will be registered by its detector if 
no polarizer is set on its path; 

t = 1 ( t ' =  1) determines that photon/~ will traverse its polarizer oriented 
along direction b(b'); 

r = l (v '=  1) determines that photon/~ will be registered by its detector 
after having crossed a polarizer oriented along direction 
b(b'); 

e = 1 determines that photon/3 will be registered by its detector if 
no polarizer is set on its path; 

s,s', ~,e',g~ = 0  (t, t', ~, T', e =0 )  determine that photon e (photon /~) will 
not cross its polarizer or will not be registered by its 
detector. 

Note that the future destiny of each individual photon, whether it will cross 
its polarizer or be absorbed, and whether it will be registered by its detec- 
tor or not, is strictly determined by the set of five vai-iables that the photon 
is assumed to carry locally with itself during its propagation. It is also 
assumed in our model that if photon c~(/?) does not encounter a polarizer in 
its flight from the source to the detector, the variable 6(e) is active at the 
detector, but it is switched off--and the variable o-(T) is switched on--upon 
interaction with the polarizer with axis a(b), and so on. 

The N o photon pairs emitted by the source may therefore be grouped 
into subsets, according to the specific set of variables [-See Eq. (18)] they 
carry. If one defines by n(s, s', o, ~', 6; t, t', ~, ~', e) the population of that 
subset of photon pairs that carry the specific set (s, s', o, a', 6; t, t', v, ~', ~) 
of variables, the normalization condition must hold 

~ n(s,s' ,  a, a', 6; t, t', ~, ~', e) = No (19) 

where the sum is extended over all the physically meaningful sets of values 
of the variables described in Eq. (18). Due to the ten different dichotomic 
variables of our model it might at first sight appear that one is dealing with 
2 l °=  1024 different subsets. Yet, it is easy to see that subsets for which, say, 
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s = 0 and, simultaneously, a = 1 are not physically meaningful since they 
would imply detection with certainty of a photon that has been absorbed in 
the polarizer. The same considerations apply for the other three polarizer 
orientations, and this reduces the number of different subsets with nonzero 
population by a factor of (3/4) 4 to 324. 

5. P R E D I C T E D  PROBABILITIES FOR O N E  A N D  T W O  P H O T O N S  

In order to define the experimental observables in terms of sums over 
populations of subsets it will be useful to adopt the abbreviated notation 

n(...) = n(s, s', ~r, a', 6; t, t', r, ~', e) (20) 

Measurable single photon probabilities can then be written 

p(a)  = N o  I ~ n(...) s(r (21) 

p(a')  = N O ' ~ n(...) s 'a'  (22) 

p(oo) = X o ' ~ n(...) 6 (23) 

q(b) = N o  ~ ~, n(...) tz (24) 

q(b') = N o '  Z n(...) t'z' (25) 

q(oo) = No I Z n(...) e (26) 

In p(a)  for example, will survive multiplication by so" only the n(...)'s that 
lead to certain transmission in the polarizer (s = t) and certain detection 
(a = t). Thus p(a)  is actually the frequency with which photons ~ will be 
detected after crossing a polarizer with axis a; the argument with the other 
probabilities is analogous. 

The various joint probabilities for double detection of the two photons 
can similarly be written: 

D(a, b) = N o  1 ~ n(...) scrtz 

D(a, b') = N o  1 ~ n(...) so-t%' 

O(a',  b ) = N o  1 ~ n(...) s'o-'tz 

D(a', b') = N o  I ~ n(...) s 'a ' t 'r '  

(27) 

(28) 

(29) 

(30) 
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D(a' ,  ~ ) - - N o  I ~ n(. . . )s 'a '~ 

D ( ~ ,  b)  = N (  1 ~ n(...) bt~: 

D(~ ,  ~ ) = N o  -t ~ n(...) 5e 

Selleri and Zeilinger 

(31) 

(32) 

(33) 

We avoided writing down D(a,  o3) and D(co, b') that are not used in Bell's 
type inequalities discussed next. 

We define a linear combination of joint probabilities as follows: 

F = D(a, b) - D(a, b') + D(a' ,  b) + D(a'  + b') 

= N o  1 2 n(...)[so-(tz" - t"c') -b S'G'(tT Jr t ' r ' ) ]  (34) 

The latter quantity will be useful in the deduction of inequalities for EPR 
experiments. 

6. STRONG AND WEAK INEQUALITIES OF THE BELL TYPE 

Next it will be shown that our model can satisfy two different types of 
inequalities: (i) The weak  inequalities essentially identical to Bell's original 
inequalities, that are a necessary consequence of our local realistic model; 
(ii) The strong inequalities, that have been used in the analysis of the 
performed experiments, and that can only be deduced by means of some 
additional assumption. The strong inequalities provide, in general limits, 
for F that are numerically much more stringent than those provided by the 
weak inequalities. In the limit of high efficiency detectors weak and strong 
inequalities coincide, and the additional assumptions become certainly true 
as a consequence of the very definition of "perfect detector." 

In order to demonstrate the inequalities one can start from the 
Clauser-Horne theorem (~) 

- X Y ~ x y - - ~ ' + x ' y + x ' y ' - x ' Y - ~ O  (35) 

always valid if 0 <~ x, x' ~< X and 0 ~< y, y' ~< K Taking now 

x = sa; x '  = s'a';  y = tr; y '  = t 'r '  (36) 

and thus X, Y= 1 one obtains 

- 1 <<. sa( t r  -- t ' r ' )  + s 'a ' ( t r  + t ' r ' )  -- s 'a '  -- tr <~ 0 (37) 

an inequality that must be valid for each individual photon pair. Mul- 
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tiplication with the population density n(...)/No and summation over all the 
324 sets of values of the dichotomic variables yields 

- 1 <~ F -  p ( a ' )  - q ( b )  <~ 0 (38) 

where the definition in Eq. (34) of F was used. These are exactly the weak 
inequalities. Therefore, as expected, our local model is in agreement with 
Bell's inequality and thus necessarily in disagreement with quantum 
mechanics. However, it will later be shown that the disagreement can 
concern only experiments made with high etfciency detectors, meaning in 
our model that the parameters a, ~', r, ~', 3, e should almost always equal 
+ t, and only rarely equal 0. 

Inequalities stronger than Eq. (38) can only be obtained by using 
some additional assumption such as the "no-enhancement assumption" of 
Clauser and Horne(lV~: 

For every photon the probability o f  a detection with a polarizer in place 
on its trajectory is less than or equal to the detection probability with the 
polarizer removed. 

With our dichotomic variables the Clauser-Horne assumption can be 
written: 

O <~ sa, s' a' <~ 6 
(39) 

0 ~< t~, t%' ~< e 

These relations imply that a photon which is registered by the detector 
with the polarizer in place would always be detected if the polarizer were 
removed, but not necessarily vice versa. Using again Eq. (35), this time with 
X =  3 and Y= e, one obtains 

- 6 e  <~ sa(t~ - t%') + s'a'(tr + t%') - s' a' e - 3tz <~ 0 (40) 

valid for every photon pair if the Clauser-Horne assumption is true. Mul- 
tiplication with the population density n(...)/No and summation over all 
324 populations now yields 

- -D(m ,  o o ) ~ V - D ( a ' ,  o o ) - D ( o o ,  b)<. O (41) 

Here we have so obtained the strong inequality, consequence of our local 
realistic model only if the "no-enhancement" assumption is made. A 
numerical comparison of the weak and the strong inequalities for three 
EPR experiments is shown in Table I. 

The numerical comparison of Table I has been made by assuming 
correct the quantum mechanical predictions for the nonparadoxical 
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Table I. Comparison of Weak and Strong Inequalities. 

Experiment e+ e~+ ~/~ qt~ weak inequality strong inequality 

Freedman-Clauser m) 1.01 1.00 0.13 0.28 -0.794~<F~<0.206 0.000~<F~<0.037 
Holt-Pipkin ~13) 0.91 0.88 0.08 0.27 -0.845~<F~<0.155 -0.002~<F~<0.019 
Aspectetal/m 1.00 1.00 0.25 0.06 --0.845~<F~<0.155 0.000~<F~<0.015 

probabilities p(a'), q(b), D(~ ,  ~) ,  D ( a ' ,  ~ ) ,  D(~ ,  b). It should be stressed 
that the strong inequalities restrict the acceptable values of F to an interval 
that is 27 times smaller for the Freedman-Clauser experiment, 48 times 
smaller for the Holt-Pipkin experiment, and 67 times smaller for the Orsay 
experiment. The quantum mechanical predictions for F violate the strong 
inequalities, but are fully compatible with the weak ones in the experiments 
of Table I, as in all known EPR experiments. 

7. DEDUCTION OF QUANTUM PROBABILITIES WITHIN OUR 
MODEL 

The "no-enhancement" assumption Eq. (39) has no justification within 
a general deterministic model, and cannot even be checked experimentally 
as a matter of principle, since it refers to different detections of i n d i v i d u a l  

p h o t o n s .  One can give a simple example where our (local) model violates 
the strong inequalities: Assume that for all photon pairs 

str = s '  tr' = t r  = t '  z '  = 1 

Therefore F = 2  and the right hand side of the inequality in Eq. (41) 
becomes 

2 ~< N o l ~  n(...)(6 + e) 

Clearly, this inequality is violated, if 6 or e vanish even for a single photon 
only! Admittedly this example is not a very physical one both because of 
the assumptions made and because it exhibits average enhancement, i.e., 
the total counting rate with polarizers present is larger than that without 
polarizers. Yet, our model having a large number of adjustable parameters 
(populations n(...) of the subensembles) is certainly rich enough to yield 
physically more reasonable cases which still violate the strong inequality. 
That this is true will be shown next. 
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In order to simplify notation, note that in all the expressions in 
Eqs. (21)-(34), the variables s, s', t, t', a, ~r', z, z' appear always in pairs. It 
is therefore useful to define the new variables 

S=scr, S'=s'cr', T = t z  T '=t 'z '  (42) 

This means for example, that S = 1 determines that photon ~ traverses its 
polarizer oriented at direction a and that it is registered by its detector, 
while S =  0 determines that a similar photon is either absorbed in the 
polarizer or transmitted but not detected. 

The populations can now be written as functions of six variables only: 

N(S, S', 6; T, T', ~) (43) 

with some of these N(...) populations being sums over some of the 
populations n(...) previously discussed. There are only two restrictions that 
these populations must satisfy: 

(i) They must be non negative; 

(ii) Their sum must equal No, the total number of  pairs. 

Whatever the choice of the N(...) satisfying (i) and (ii) one could easily 
conceive a source producing the right ensemble of pairs. We are thus free 
to assume that 

N(S, S', 3; T, T', ~) = NoF(S, S'; T, T') G(6; e) (44) 

where F(...) and G(...) are nonnegative functions of their dichotomic 
arguments satisfying 

F(S, S'; T, r ' ) =  1 (45) 
S,S',T,T' 

G(6; ~)= 1 (46) 

In order to reproduce the quantum mechanical predictions of 
Eqs. (21)-(34) it is enough to assume that only the following 9 quantities F 
are nonzero: 

F 1 =F(1,  

r~ = F(1, 

F3 =F(0,  

F4 = F(0, 

F5 = f(1, 

0; 1, 0) = Do(a, b) 

0; 0, 1 ) = Do(a, b') 

1; 1, 0) = Do(d, b) 

1;0, 1) = Do(a', b') 

0; 0, 0) = po(a) - [Do(a , b) + Do(a, b')] 

(47) 

825/t8/12-2 
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F6 = F(0, 1; 0, 0 ) -  

F7 = F(0, 0; 1, 0) = 

Fs=F(0, 0; 0, 1)= 

~ = F(0 ,  0; 0, 0)  = 

Selleri and Zeilinger 

po(a')- [Do(a', b)+ Do(a', b')] 

qo(b) - [Do(a, b) + Do(d, b)] 

qo(b') - [Do(a, b') + Do(a', b')]  

1 -(F,+F2+F3+F4+Fs+F~+FT+Fs) 

1 - po(a) - po(a') - qo(b) - qo(b') + Do(a, b) 

+Do(a, b') + Do(a', b) + Do(a', b') 

For the G(...) quantities we assume 

G, =G(1;  1) = Do(~ ,  ~ )  

G2 = G(1; 0) = Po(°° ) - Do(o% ~'.)) 

G3 = G(0; 1) = qo(OO)-Do(cO, oo) 

(47) 

(48) 

G4 = G(0; 0) = 1 -(G1WG2+G3) = 1 -po(OO)-qo(Oo)+Do(o% oo) 

Now every interesting probability can be calculated by using Eqs. (44), 
(47) and (48): 

p, q , D ~  B(f; g ) - t ~ ,  F(S, S'; T, T'). f ] I ~  G(b; e). g ] (49) 

where f and g are suitable products of dichotomic variables and B(f; g) is 
the bilinear form of f and g defined by the right-hand side of Eq. (49). It is 
now a simple matter to obtain all the interesting probabilities by using 
Eqs. (45) or (46) whenever possible: 

O(a, b) = B(ST; 1 ) = F~ = Do(a, b) (50) 

D(a, b')=B(ST'; 1)=F2  =Do(a,  b') (51) 

D(a', b) = B(S'T; 1) = F3 = Do(a', b) (52) 

D(a', b')= B(S'T'; 1 ) = F 4 = D o ( a ' ,  b') (53) 

D(a', oo)=B(S';E)=(F3+F4+F6)(G~+G3)=po(a')qo(oO) (54) 

O(a, oo)=B(S;e)=(Fl+F2+Fs)(G~+G3)=po(a)qo(OO) (55) 

D(~,  b) = B(T; 5) = (F1 + F3 + FT)(G1 + G2) = po(~) qo(b) (56) 

D(~,b ' )=B(T';h)=(Fz+F4+F8)(Gt+G2)=-po(~)qo(b ' )  (57) 

O ( ~ ,  ~ )  = B(1; fie) = GI = Do(~ ,  ~ )  (58) 
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p(a) = B(S; 1) = F 1 --k F 2 -Jr F 5 = po(a) (59) 

p(a')= B(S'; I )= F3 + F4 + F6= Po(a') (60) 

p(oo) = B(1; 6) = Gt + G2 = po(oo) (61) 

q(b) = B(T; 1 ) = F~ + F3 + F7 = qo(b) (62) 

q(b') = B(T'; 1) = Fz + F4 + F8 = qo(b') (63) 

q(oo) = B(1; e) = GI + G 3 = qo(oO) (64) 

From Eqs. (6)-(13) one sees that po(a)qo(Oo)=Do(a, oo), etc. Therefore 
the calculated probabilities of Eqs. (50)-(64) coincide exactly with their 
quantum mechanical counterparts. We have so obtained a complete 
reconstruction of the quantum formulae with a local deterministic model. As 
stated before, the quantities F(...) and G(...) can in no case be negative. We 
must next find out in which cases this is actually so. 

The sum of the nine F(...) has been set equal to unity, by Eq. (47). 
Therefore, only the positivity of the F(...) needs worry us. Positivity is 
certainly satisfied for F1, F2,/:3, F4 because of their definition in Eq. (47). 
Considering Fs, one sees that positivity is certainly satisfied if it is when the 
two cosines entering in Do(a, b) and Do(a, b') are set equal to unity. This 
leads to the condition 

1 ~>[e~+ + e~-e+ e ~_F]qp 

which is in turn certainly satisfied, in practical experiments, if t/~ ~< 1/2. The 
same condition guarantees the nonnegativity of F6. Similarly, r/~< 1/2 
guarantees nonnegativity of F7 and Fs. Coming to the last term we see that 
F9 is certainly nonnegative if it is when all Do's are set equal to zero. The 
obtained condition is satisfied again if ~/~ ~< I/2 and r/~ ~< 1/2. 

Finally, G~ is never negative; G2 and G3 cannot be negative if r/, and 
q~ do not exceed unity; The nonnegativity of G 4 is certainly true if neither 
~l~ nor ~/~ exceed 1/2. 

We conclude that in our model all probabilities are nonnegative and 
correctly normalized if t/~ ~< 1/2 and t/~ ~ 1/2. That these conditions are well 
satisfied in real life can be seen from Table I. For detectors having an 
efficiency above the 50% level our model blows up and no reproduction of 
the quantum mechanical predictions in local deterministic terms is possible, 
consistently with Bell's theorem. 
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8. THE CASE OF TWO-WAY POLARIZERS 

In the case of two-way polarizers we introduce, like before, variables 
S, S' (for photon a) and T, T' (for photon fl) determining the future 
behavior of each photon. This time our variables shall however be three- 
valued: For example, S =  +1, - 1 ,  0 will determine that photon e will be 
transmitted by the polarizer oriented along a and that it will be detected, 
that it will instead be reflected and detected (in the extraordinary ray), that 
it will not be detected in any channel, respectively. We will not deal in the 
present case with terms such as D(a +, ~ ) ,  that have never been measured, 
but the complications needed to do so consist again of the introduction of 
G functions similar to those of the previous section. 

Therefore our F(...) functions are of the type 

F(S, S'; T, T') 

and there are a priori 34 of them. They can be reduced to 25 with nonzero 
population if it is assumed that only the configurations 

(S ,S ' ) , (T ,  T ' ) =  (1, 0), (0, 1), ( -  1, 0), (0, --1), (0, 0) 

present themselves. We furthermore assume: 

F(1, 0; 1, 0) = D o ( a +  , b+) ,  F ( -  1, 0; - 1, 0) = D o ( a -  , b - )  

F(1, 0; 0, 1 ) = Do(a +,  b' + ), F( - 1, 0; 0, - 1 ) : Do(a- ,  b' - ) 

F(0, 1; 1, 0) = Do(a' + ,  b+) ,  F(0, - 1 ;  - 1 ,  0 ) = D o ( a ' - ,  b - )  

F(0, 1;0, 1 ) = O o ( a ' + ,  b '+) ,  F(0, - 1 ; 0 ,  - 1 ) - =  D o ( a ' - ,  b ' - )  

F(1, 0; - 1, 0) = 

F(1, O; O, - 1 ) =  

F(0, 1; --1, 0 ) =  

V(0, 1;0, - 1 ) :  

F(1, O; O, 0 ) -  

F(-1,  0;0, 0)= 

F(0, 1; 0, O)= 

Do(a+, b - ) ,  F ( - 1 ,  0; 1, 0 ) = D o ( a - ,  b + )  

Do(a +, b' - ), F( - 1, 0; 0, 1 ) = Do(a- ,  b' + ) 

Do(a' +, b -  ), F(O, - 1 ;  1, 0 ) = D o ( a ' - ,  b + )  

Do(a'+, b ' - ) ,  F(0, - 1 ; 0 ,  1 ) = D o ( a ' - ,  b ' + )  

po(a+ )--Do(a+,  b+ )--Do(a+,  b - )  

- Do(a +, b '  + ) - Do(a +,  b ' -  ) 

po(a -  ) -- Do(a--, b + ) - Do(a - ,  b - ) 

- Do(a--, b '  + ) - Do(a- ,  b ' -  ) 

po(a' + ) -- Do(a' +,  b + ) - Do(a' +, b -  ) 

- Do(a' +, b '  + ) - Do(a' +, b ' -  ) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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F(0, - 1; 0, 0) = p o ( a ' -  ) - D o ( a ' - ,  b+ ) -  D o ( a ' - ,  b -  ) 

- D o ( d - ,  b '+ ) - D o ( a ' - ,  b ' -  ) (76) 

F(0, 0; 1, 0) = qo(b + ) - Do(a +,  b + ) - D o ( a - ,  b + ) 

- D o ( a '  + ,  b + ) - D o ( a ' - ,  b + ) (77) 

F(0, 0; - 1, 0) = q o ( b -  ) - Do(a +, b -  ) - D o ( a - ,  b -  ) 

- Do(a' +, b - ) - Do(a' - ,  b -  ) (78) 

F(0, 0; 0, 1) = qo(b' + ) - D o ( a + ,  b' + ) - D o ( a - ,  b' + ) 

- D o ( d + ,  b' + ) -  D o ( a ' - ,  b' + ) (79) 

F(0, 0; 0, - 1 ) = qo(b' - ) - Do(a +, b' - ) - D o ( a - ,  b ' -  ) 

- Do(a' +, b ' -  ) -  D o ( a ' - ,  b ' -  ) (80) 

The remaining F(...) function, that is F(0, 0; 0, 0), is assumed to be unity 
minus the sum of all other 24 F(...) functions given by Eqs. (65)-(80). In 
the present case one has, for example: 

D(a+,  b + ) =  ~ F(S, S'; T, T')[S(1 + S) /2][T(1  + r ) /2]  

=F(1,  0; l, 0 ) = D o ( a + ,  b + )  (81) 

the sum being extended over all values of S, S', T, T'. The factor 
S(1 + S)/2 is such that only terms with S = 1 can contribute, and similarly 
for T(1 + T)/2. 

One sees from Eq. (81) that the quantum mechanical predictions are 
obtained once more. This result holds for all possible single particle 
probabilities and joint probabilities for two particles, as one can easily 
check from Eqs. (65)-(80), and we wilI not insist on this. Again, our model 
blows up for detector efficiencies above the 50% level. 

9. CONCLUSIONS 

A broad class of local deterministic models indistinguishable from 
quantum mechanics for low detector efficiencies has been shown to exist. It 
should also be stressed that within our model populations are also possible 
in principle which would violate the strong inequalities more than the 
violations observed hitherto in experiments. It is remarkable that Nature is 
such that the strong inequality is violated just the way quantum mechanics 
predicts and neither in a stronger nor in a weaker way as would both be 
possible in a realistic model of the kind proposed here. 
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Finally we stress again that our model violates the strong inequality 
only because it violates the no-enhancement hypothesis. Only if experimen- 
tal et~ciencies can be significantly improved over the present status of EPR 
experiments, this hypothesis can be ruled out definitively. The difference in 
the expectations of the present authors whether this will happen or not is 
indicative of the diversity of opinion among physicists at large. 
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