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In the present study we identify various general features governing the cvolution of quantum cellular automata which have 
been introduced as a means of extending general systems theo~ into the quantum domain. It is found that a conservation law 
connects the strength of the mixing of locally interacting states and the periodicity of the large-scale (global) structures which 
develop during the evolution of quantum cellular automata. Moreover. for a large class of quantum cellular automata, the 
global patterns exhibit irreversible behavior. 

1. Introduction 

One of the central topics of modern systems 
theory is the relationship between individual parts 

of a structure or of a process on the one hand and 
the overall evolution of that structure or process 
on the other hand. In other words, it is the rela- 
tion between descriptions on a local and descrip- 
tions on a global level that has become a point of 
central interest. One example thereof is the possi- 
bility of generation of "order out of chaos" in 
complex systems. In this context, the question of 
an evolutionary " t ime arrow" has also been raised. 
This question arises if one considers how ap- 
parently local reversible rules could generate in a 
way to be understood irreversible processes on 
some other, more global, level (as, e.g., in morpho- 
genetic models in biology). 

Our main interest in this paper is to study such 
questions of systems theory in the context of 
quantum theory. This is part of a larger program, 
one of the goals of which is to work out on a 

general level similarities between general systems 
theoretical properties in classical and in quantum 

processes. Another goal is to understand the rea- 

son for the differences between the two domains. 
This should help us to understand both domains, 
and what distinguishes them, better. The tools 
with which we intend to obtain such understand- 

ing are cellular automata. 
The reasons why we chose cellular automata for 

our study are twofold. Firstly, certain cellular 
au tomata  are known, at least on the classical level, 
to be capable of universal computation [ 1 ] - a  
quite general systems modeling feature. And sec- 
ondly, cellular automata are represented by N- 
dimensional arrays, the evolution being repre- 
sented by rules connecting the values of the indi- 
vidual sites of the arrays at various times with 
each other [2]. We submit that this latter feature 
makes cellular automata particularly amenable to 
generalization into the quantum domain. 

In order to achieve this generalization we have, 
in a previous paper [3], introduced cellular au- 
tomata  in a complex state space. That is, we have 
attributed some complex number c1j to each site 

of the cellular automaton. As is standard in quan- 
tum rnechanics, these complex numbers are then 
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interpreted as probability amplitudes. Their evolu- 
tion is governed by rules which are constructed 
such as to permit their superposition. 

For such automata we have coined the term 
"quantum cellular automata" and we have begun 
to study the evolution of one-dimensional quan- 
tum cellular automata, focusing for the time being 
on strictly local (i.e. nearest neighbor) interaction. 
Approximation of the unitary evolution operator 
by 

U = e - i n t / h  ~___ 1 - i H t / h  

and introduction of periodical boundary condi- 
tions with a Hamiltonian of the form 
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results with ~ - - ( t / h  in the following transition 
rule for our one-dimensional quantum cellular au- 
tomaton: 

1 
Cl+i, J = vi ~ (el ,  J + i*ci, j _  1 + iS*ci,  j + l ) .  (2) 

For large 8, the evolution (2) becomes non-unitary 
but remains local. Here, I and J denote time-step 
and site location respectively, and N is a normal- 
ization factor such that 

Icul  2 = 1 for all I. 
J 

In ref. [3] we have presented the results in the 
form of probability maps plotting the "temporal" 
evolution of one-dimensional cellular automata in 
terms of the normalized probability values Pu = 
c ~ c  u for each site J at each time step I, using 
different colors for different probabilities. Study- 
ing these maps, we have found typical quantum 
features like constructive and destructive inter- 

ference, or beats. Moreover, certain large scale 
structures have appeared whose form changes upon 
variation of the coefficient 8 c of the off-diagonal 
element 8 = ~c(1 + i) in the Hamiltonian [3]. (See. 
for example, plate I displaying a probability map 
for 8 = 20(1 + i), i.e. 8~ = 20, and one initial point.) 

In this paper, we study the possibility of attri- 
buting a characteristic size of the periodically re- 
appearing structures to a specific value ~ or to 
other parameters, i.e. we explore the dependence 
of structures such as the "ellipse"-like ones in 
plate I upon variation of various parameters. More 
explicitly, since in all cases studied the size of such 
a structure is just twice its periodicity (i.e. the 
distance between neighboring centers of those 
overlapping patterns), we investigate the depen- 
dence of the periodicity of such "global" struc- 
tures (as opposed to the "local" rules applied) on 
four kinds of variations: 

i) variation of the periodical boundary condi- 
tions; 

ii) variation of the number of initial points: 
iii) variation of the size of the off-diagonal ele- 

ments 8; 
iv) variation of the quantum phase relations 

between the individual cellular automaton states 
by varying independently real and imaginary parts 
of 8. 

2. General properties of the observed patterns 

There are several results which hold generally 
for all quantum cellular automata with 8 c >_ 1 (note 
that, as has been shown in ref. [3], one generally 
obtains striped patterns for all quantum cellular 
automata with 8~ > v~-). 

1) One can clearly distinguish three domains, or 
"phases", of the evolution on the global level: a) a 
mostly complex development from the initial states 
to the first appearance of recognizable large-scale 
periodical structures, b) strictly periodical, "el- 
lipse'-like structures, and c) an "infinite-time 
state" which represents the stable final state that 
appears at the end of the total evolution and 
which resembles a plane wave pattern. 
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Plate I. Evolution of a quan tum cellular automaton with one initial point (6c=20)  and J =  120 sites (vertical). The time axis (index 1) 
runs from left to right. Different colors represent different probabilities. The characteristic periodicity A is half the size of  the nearly 
elliptical patterns. 

Plate lI. Same as plate I, but  with only J =  40 sites. The periodicity A is the same as in plate I, but  the evolution towards the infinite-time 
state is accelerated. 

Plate III a-c.  Same as plate I, but  with I0 initial points at sites J =  1, 3, 9, 25, 30, 50, 60, 75, 90, 100. The time axis runs consecutively 
through plates a, b and c. Again, the same periodicity results as in plate I. The pattern gradually becomes more regular while information 
on the initial condition is slowly getting lost. 
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(An exception to c), however, is given under point 
5).) 

2) As noted above, calling the distance (mea- 
sured in time steps) between two centers of 
neighboring patterns the "periodicity" of the 
quantum cellular automaton, it holds that the 
global patterns appearing are exactly twice as 
large as the corresponding periodicities (plate I). 
This is a consequence of the specific form of 
overlap between neighboring patterns which, we 
assume, is a result of the quantum nature of our 
cellular automata, i.e. quantum superposition. 

3) The periodicity of the global structures is 
independent of the size of the quantum cellular 
automaton (i.e. the numbers of sites J used per 
time step before the periodical boundary condi- 
tion becomes effective). The main effect of a nar- 
rowing down of the size of a quantum cellular 
automaton through reduction of the number of 
available states J is an acceleration of the global 
evolution towards the infinite time state. For illus- 
tration, we show in plate II the same quantum 
cellular automaton as for plate I (i.e. 8~ = 20) 
except that the number of states used is 40 instead 
of 120. This implies that, because of the periodic 
boundary conditions, in plate II the site J = 41 
corresponds to the site J = 1. However, the peri- 
odicity of the resulting pattern in plate II is ex- 
actly the same as the one in plate I. Note that the 
"p lane  wave" pattern, i.e. the infinite time state, 
appears already after a few time steps while with a 
cellular automaton of J = 120 sites they would 
appear much later (see plate IIIc). 

4) The periodicity is also independent of the 
number of initial points. In plate III we display an 
initially irregular quantum cellular automaton with 
10 initial points (again with 6 c = 20) at sites J = 
1, 3, 9, 25, 30, 50, 60, 75, 90,100, which gradually be- 
comes more regular. Measuring the distances be- 
tween the centers of the overlapping global struc- 
tures in plate IIIb or IIIc we obtain exactly the 
same result as for plate I where only one initial 
point had been used. 

5) As we have reported in ref. [3], there is a 
specific condition called the "constancy in time 

criterion" that, if fulfilled, produces stable pat- 
terns periodically reappearing with the same size 
after a few hundred time steps: whenever the 
initial configuration is such that the location of the 
sets of initial points, with each set containing at 
least one initial point, is rotation symmetric with 
respect to the axis of the torus defined by the 
periodic boundary conditions, one obtains stable 
patterns which are then conserved for all later 
times. 

It is important to note that only for the stable 
patterns mentioned in point 5) above one has a 
time-reversal symmetry on the global scale, while 
generally for all other quantum cellular automata 
with 6~ >_ 1 the patterns gradually become progres- 
sively flatter and eventually flatten out completely 
to create patterns that appear like plane waves 
(see, e.g. plate II or IIIc). In other words, in all the 
cases the state the evolution tends to with pro- 
gressing time only depends on 6~ but is indepen- 
dent of the specific details of the initial condition. 
This implies that the longer the evolution lasts, the 
less information on the initial condition will be 
left in the cellular automaton. 

Such a loss of information means that for the 
largest class of quantum cellular automata one 
obtains a definite time direction on the level of the 
global structures. As we have shown recently, this 
type of irreversibility results from the fact that the 
evolution (2) becomes non-unitary for large enough 
values of 8 c. For a more detailed discussion, see 
ref. [4]. 

3. Quantitative properties 

In addition to studying the general features of 
patterns in quantum cellular automata, we have 
also investigated quantitatively the effects which 
arise upon variation of the off-diagonal elements 8 
of our Hamiltonian. The magnitude of these ele- 
ments determines the relative admixture of the 
probability amplitudes at the neighboring sites 
J -  I and J + 1 at time step I -  1 to the probabil- 
ity amplitude at site J at time step 1. Therefore, 6 
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will hencefor th  be called "mix ing  parameter" .  
General ly ,  the mixing paramete r  is a complex 

n u m b e r  

6 = 6 r e i * = S r ( c O s e p + i s i n ~ p ) = : 6 c + i S ~ .  (3) 

Thus,  for the case 8 = 8c(1 + i), i.e. 8 c = 6  [, (as 
a lways used in the previous examples)  one attri- 
butes  a q u a n t u m  phase of ~ =  7r/4 to 6, and in 

general  the phases  are given by 

a: 
'b = arc tan  ~ ] .  (4) 

In figs. 1 and 2 we present the dependence of 
the periodici ty  A of the global features of quan tum 
cellular au toma ta  (measured in A I  consisting of 

the units of  t ime steps I )  on the choice of  the 
mixing pa ramete r s  8. It turns out that there exist 
two clearly dist inguishable domains.  In the first, 
depic ted in fig. 1 where 6 R <  1, no regularity 

could be found except for extremely small values 
of 8 R where A rapidly grows towards infinity. 

(The fact that for some values of 8 R, two values 
for A are given, is caused by the appearance  of 
different super imposed structures which one can 
often clearly identify as beats.) The situation is 

completely  different, however, for values 8 R >__ 1. 
As can be seen from fig. 2, for a constant  value of 
q~ the dependence of A on 8 R is strictly linear. 
Moreover ,  the whole domain  of structures appear-  
ing upon  var ia t ion of 8 is confined by two linear 
equat ions,  one holding for ~ = 0, rr /2,  ~r . . . . .  etc., 

and the other  for ~ = ~r/4, 3~r/4, 5 ~ / 4  . . . . .  etc. For 
ep= nTr/2 (n = 0 ,1 ,2  . . . .  ) it holds that 

= _~a., (5) 

and for O = ( 2 n  + 1 ) .~ r / 4  (n = 0 , 1 , 2  . . . .  ) 

A = 58R. (6) 

For  any  other value of the quan tum phase we 
also found a linear relationship with slope values 
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Fig. 1. Characteristic periodicity A measured in units of time steps A I versus small values of the mixing parameter d R, i.e. 8 r _< 0.5. 
No regularity can be observed except for extremely small values of 8 R where ~ rapidly grows towards infinity. 
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Fig. 2. Characteristic periodicity A measured in units of time steps ~ I  versus large values of the mixing parameter , ~ .  i.e.. 
1 < 8 R < 100. For a constant value of the quan tum phase ¢ the dependence of J on ~R is strictly linear with the slope being a 
function of the quan tum phase q~. The cases of maximum and minimum slopes are shown. 
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in between these two cases. Thus, one can gener- 
ally attribute to each given phase q~ a slope k 
which is bounded as 

7 < k _< 5. (7) 

This linear relationship permits us therefore to 
formulate a conservation law for quantum cellular 
automata. Since I describes the discrete time 
parameter, we may identify the inverse of the 
periodicity A of a pattern as the characteristic 
frequency ~0 of the quantum cellular automaton 
(~0 = l / A ) .  It then generally holds for all au- 
tomata with 8 R >_ 1 that 

81~'w = constant. (8) 

The constant in eq. (8) is only a function of the 
quantum phase q~. The dependency of the con- 
stant on the phase q, is rather weak as can be seen 
from fig. 3 where we present "section cuts" through 
fig. 2 for constant 8p.. One can see that the result- 
ing functions exhibit sharp maxima at A = 58 r 
but stay mostly around the flat minima at A = 
3.58 w 

the faster the development and completion of a 
global pattern would be obtained. The opposite is 
true, however, and this fact can be put into the 
framework of the conservation law as formulated 
in eq. (8). 

Moreover, one observes irreversibility of the 
global pattern evolution among the largest class of 
quantum cellular automata. This behavior is a 
consequence of the non-unitarity of the evolution 
operator (see ref. [4]). In the other cases, stable 
patterns occur. However, the common feature of 
all these quantum cellular automata is their strict 
periodicity in an exact linear dependence on the 
off-diagonal elements 8 of their evolution oper- 
ators. This may very well support the assumption 
that "chaos" is much less likely to appear on the 
level of quantum systems than on the classical 
level, the latter being represented by deterministic 
or stochastic cellular automata. 
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6. Concluding comments 

To summarize, it seems remarkable that one can 
observe an exact linear behavior for the largest 
domain of values By. (By. > 1): the periodicity and 
the size of the global structures are solely de- 
termined by the strength and (to a lesser degree, 
i.e. with less influence) by the phase relations of 
the local nearest neighbor couplings. This is a 
somewhat counterintuitive result, because one may 
have expected that the stronger the local couplings 
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