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Bragg diffraction of neutrons incident at grazing angles on crystal surfaces has been stud-
ied both theoretically and experimentally. In the theoretical analysis, use of the complete
fourth-order expression for the dispersion surface had to be made. The calculations have
shown that significant modifications are expected in both the optical total reflection phe-
nomena and in the characteristics of the Darwin diffraction plateau as compared to situa-
tions where only either process can occur. The most interesting consequences are (a) a
change of the critical angle for total reflection, (b) a significant reduction of the height of
the Darwin plateau and a modification of its intensity distribution, (c) pronounced shifts of
the Bragg peak to angles above the critical angle, and (d) a significant reduction of the
penetration depth of Bragg-diffracted radiation. An experimental study of Bragg diffrac-
tion at internal (022) planes of a large Si crystal with neutrons incident at grazing angles
onto a polished external (211) surface has been performed. The wavelength distribution of
that beam was characteristic of neutron-diffraction experimentation and hence broad by
dynamical diffraction standards. The experimental result therefore shows features as ex-
pected from a sum of many individual reflectivity profiles and confirms both that the Bragg
reflectivity is small for incidence below the critical angle and that a peak of that reflectivity
occurs just above the critical angle. Practical application of the observed phenomena for the
investigation of surface structures is discussed.

I. INTRODUCTION

In investigations of the crystal diffraction of neu-
trons one usually neglects surface-reflected beams
because of the large angle of incidence used in con-
ventional experiments. This is also characteristic of
the conventional theory of dynamical diffraction! =3
in which the mirror reflected waves are not included
in the treatment. However, these waves become im-

portant for cases where the neutrons are incident on -

a crystal surface at shallow angles, most markedly if
this angle of incidence is in the range characteristic
of total mirror reflection. Equivalently, the interest-
ing question arises as to whether the phenomenon of
total reflection is influenced when the neutron beam
also satisfies the Bragg condition for a set of
crystal-lattice planes. The present paper deals with
the Bragg case of grazing incidence both theoretical-
ly and experimentally.

As is well known, dynamical diffraction of neu-
trons is closely analogous to the diffraction of x rays
and is generally less complicated because negligible
absorption for neutrons is usually encountered. For
x rays, the Bragg case of grazing incidence was
given an early analysis in a general way by Farwig
and Schiirmann.* This was then extended by Kishi-
no and Kohra® who investigated both the modifica-
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tions in the deviation from the geometrical Bragg
angle and the width of the plateau of the diffraction
curve. Some of their results were disputed in later
work by Briimmer et al.® and Hirtwig’ who used an
approach based on a calculation of the excitation er-
ror first introduced by Bedinska.! In contrast, they
found good agreement between their theoretical and
experimental results and the predictions of Rus-
tichelli,’ who derived closed-form expressions for
both of these quantities using geometrical considera-
tions exploiting the fact that the dispersion surfaces
asymptotically approach spheres in contrast to the
conventional dynamical theory. Very recently, Vine-
yard'® wused distorted-wave Born-approximation
(DWBA) calculations to predict the results of exper-
iments where the diffraction of beams incident at
angles below the critical angle of total reflection as
proposed earlier by Eisenberger and Marra'! is stud-
ied.

In Sec. II we will present our theoretical deriva-
tion of the complete expression of the dispersion
surface and discuss the treatment of some charac-
teristic cases. Boundary conditions lead then to the
amplitudes of both the Bragg-diffracted and the
mirror-reflected wave. Using this approach, calcu-
lated reflectivity curves for monochromatic radia-
tion will be presented in Sec. III and discussed using
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the properties of the dispersion surface. Section IV
will then present the results of experiments in which
a well-collimated neutron beam with a broad wave-
length distribution (by dynamical diffraction stand-
ards) was incident at near grazing incidence upon
the (211) planes of a perfect silicon crystal with the
beam also satisfying Bragg-diffraction conditions
for internal (022) planes. In Sec. V we discuss some
possible extensions of the present work in particular
applications to the study of surface phenomena and
properties. It is particularly suggested that investi-
gations of cases where a surface layer exists of a re-
fractive index different from the bulk should be
promising.

II. THE DISPERSION SURFACE

We start with the time-independent Schrodinger
equation

[——"—vuv T =EWT (1)

where m is the mass of the neutron, E is its vacuum
kinetic energy, and V(T) is the neutron-crystal in-
teraction potential. Now using the ansatz
B (E)=uy(De’ T, @
where K is an in-crystal wave vector and j desig-
nates a particular wave-field solution, and expanding
both u(T) and V() into their Fourier components
u(G) and V(G) in terms of the reciprocal-lattice
vectors G, we obtain the fundamental equations for
dynamical diffraction of neutrons,’

hZ

—(K+G)*—E
2m

u(G)=—3SV(G-Gu(G).
‘G’,

(3)

For the case where no lattice planes are oriented for
Bragg diffraction to occur, only one of the equations
(3) prevails, and

h2

K2 —
2m

E {u(0)+V(0)u(0)=0. 4)

Using the continuity of tangential components of
wave vectors at the entrance face, we find that the
in-crystal wave vector K is related to the vacuum
wave vector K via

K=K+kef, (5)

where 7 is a unit vector oriented normal to the sur-
face pointing into the crystal (Fig. 1). In order to

FIG. 1. Geometry in real space in the absence of Bragg
diffraction (one-beam case).

determine the excitation error € and hence K from
Eq. (4), we use

K =k*(1+42ecosy+€?) (6)

since Ak =k cosy (see Fig. 1). Inserting Eq. (6) into
Eq. (4) gives a second-order polynomial equation for
€, which finally results in the following possible in-
crystal wave vectors:
172
i ]ﬁ

__v()

K=Kk+kcosy |+
4 E cos’y

(M

Here y is the angle between the incident vacuum
wave vector k and the surface normal 7. For shal-
low angles of incidence, cosy varies strongly with
that angle and therefore our definition of the excita-
tion error € includes cosy in contrast to the conven-
tional treatment of dynamical diffraction.® Equa-
tion (4) defines the dispersion surface in the one-
beam case. The two possible values of K inside the
crystal correspond here to a refracted wave and to
that wave reflected at a possible back face of the
medium. From Eq. (7) we readily obtain total re-
flection if the square-root term becomes imaginary.

Turning now to a case where one set..of lattice
planes is oriented such that Bragg diffraction may
occur, the system of Egs. (3) reduces to the two cou-
pled equations

hZ
——K?*—E+V(0)

. u(0)+V(—Gu(G)=0, (8a)

N 2
V(G)u (0)+ ;’;(K +G)P?—E +V(0) |lu(G)=0

(8b)

The in-crystal wave vectors K are again related to
the vacuum wave vector k through Eq. (5). In addi-
tion, we need the relation
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(K+G)=k? |1 +a+2e cosy—%cosﬁ +é,
where ©
a=(G*+2k-G)/k? (10)

and B is the angle between crystal surface and lattice
planes (Fig. 2).

In order for Egs. (8) to have nontrivial solutions
for the amplitudes u, the secular determinant of that
system of equations has to vanish, which together
with Egs. (6) and (9) leads to the fourth-order poly-
nomial equation for €,

——

FIG. 2. Geometry in real space with asymmetric Bragg
diffraction (two-beam case). The orientation of the dif-
fracting lattice planes is indicated schematically.

42 2cosy——i—cosB e+ a+2V—I(;))—+4 coszy—%cosycosﬁ €
X S
+2 acosy+—V;—0) ZCosy—%cosB €+a V}(ZO) + VE('(;) — V(G);/Z( G) =0. (11

This equation defines the complete dispersion sur-
face for the two-beam case. In the conventional ap-
proach one deals only with the hyperbolic part of
the surface in the vicinity of the Laue point L,
which implies that quadratic terms in € are neglect-
ed in Egs. (6) and (9) thereby leading to only a
second-order polynomial equation for € in Eq. (11).
In order to arrive at explicit results from Eq. (11),
we have solved this equation numerically. During
this solution procedure, special precaution must be
taken to avoid numerical errors which may arise
from the fact that the various values for € can differ
by many orders of magnitude. The number of real
solutions for € and hence the number of wave fields
with real wave vectors inside the crystal depends
strongly on the magnitude of the coefficients of Eq.
(11) and hence on the geometrical parameters for the
situation which is being considered.

We will now consider explicitly how the wave
fields, which are excited inside the crystal, are relat-
ed to the shape of the dispersion surface as obtained
from Eq. (11). We shall concentrate on the case
where the orientation of the crystal surface will al-
ways correspond to that of extremely asymmetric
diffraction.

We first consider the case of neutrons with a vac-
uum wavelength large enough that the neutrons are
Bragg diffracted at incident angles significantly
larger than the critical angle for total reflection.
This implies that the regions of total surface reflec-
tion and Bragg diffraction are well separated. Fig-
ure 3 shows the dispersion surface for that case. We
start [Fig. 3(a)] with the specific case of a wave vec-
tor k which is incident at an angle above the regions

[
of both Bragg diffraction and total reflection. As

expected, four wave fields as signified by the four tie
points 4, to A, are excited inside the crystal. In the
conventional dynamical diffraction analysis of the
Bragg case only the tie points 4, and 4; are con-
sidered for the case of a plane parallel crystal plate.
The wave fields associated with 4, and A4 are not
found in that approach since there the asymptotes to
the hyperbolic part of the dispersion surface are not
taken as spheres. Also indicated are the directions
of the neutron probability density currents j—the
analog to the energy density current in x-ray diffrac-
tion. These directions are oriented normal to the
dispersion surface at the tie points. We find that the
neutron currents for the two wave fields associated
with A3 and A4 are pointing towards the crystal sur-
face. These wave fields would arise from reflection
at the back face of the crystal and hence we may
neglect these wave fields for a semi-infinite crystal
as considered here. Only the wave fields associated
with 4, and A, are propagating into the crystal. Of
these, wave field 1 arises from back reflection of the
Bragg-diffracted wave into the crystal at the en-
trance face. In a quantitative analysis it was found
that this wave is of very small amplitude. Thus only
wave field 2 is of significant amplitude inside the
semi-infinite crystal.

If we now consider rotating the incident wave
vector to shallower angles of incidence, we arrive at
a situation where the surface normal through the
tail of k passes through the gap between the two
branches of the dispersion surface [Fig. 3(b)].
Therefore only two real solutions for € are obtained,
the other two being complex conjugates leading to
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FIG. 3. Geometry in reciprocal space for asymmetric
Bragg diffraction near “grazing” incidence showing the
dispersion surface. From (a) to (d) the angle of incidence
of the vacuum wave vector kK with respect to the crystal
surface is systematically lowered. Four distinctly dif-
ferent regions of diffraction are observed (see text).

two complex solutions for K. Of these, only the one
which gives an exponentially decaying wave field is
physical for a semi-infinite crystal. This is also
known as the Darwin plateau region where only
negligibly small intensity may propagate deep into
the crystal since the amplitude associated with 4 is
still found to be very small.

Reducing the angle of incidence further [Fig. 3(c)]
leads then to a situation where we have again four
real tie points, but now they are arranged on the

same branch of the dispersion surface. Here again,
propagation of intensity into the crystal may occur
and it is again the wave fields associated with the tie
points 4, and A, which are physical for the case of
a semi-infinite crystal and of them only A4, is of sig-
nificant amplitude.

An even further reduction of the angle of in-
cidence leads to the two tie points 4, and 4, mov-
ing close together until they coalesce in one point.
This point gives the critical angle for total reflection
since at smaller angles of incidence we are left again
with only two real tie points 4; and 43 [Fig. 3(d)],
of these only A, is physical, but again with negligi-
ble amplitude, for the semi-infinite crystal.

Thus for that specific choice of wavelength and
surface orientation four well-distinguishable regions
exist which are characterized by the number and
type of real tie points excited. We now wish to
point out that situations exist where for grazing in-
cidence such is not the case. To analyze that possi-
bility we imagine an experiment where the incident
neutrons would fulfill the Bragg condition at shal-
lower angles of incidence, this implies shorter wave-
length neutrons if we keep the orientation of the re-
flecting lattice planes with respect to the surface un-
changed. Therefore, the dispersion surface will be
larger with respect to G as shown in Fig. 4.

(a)

Crystal
Surface

(b)

Crystal
Surface

FIG. 4. Dispersion surface for a more asymmetric case
than Fig. 3. Here only two different regions are observed
when the angle of incidence is lowered. This case occurs
at shorter wavelengths as compared to Fig. 3.
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We again consider first an angle of incidence
which is oriented in a direction much larger than
both the Bragg-diffraction and total-reflection re-
gions [Fig. 4(a)]. Here we excite four real tie points
in a completely analogous way to Fig. 3(a) above. If
we now decrease the angle of incidence we enter
again the region where only two real tie points are
excited. The interesting difference to the situation
discussed above is that a further reduction of the an-
gle of incidence will never result in a situation such
as the one shown in Fig. 3(c), where again four real
tie points were excited below the Bragg-diffraction
region. As can be seen from studying Fig. 4 this
behavior is due to the property, that in the region
around the Laue point the curvature of the disper-
sion surface is significantly different from that of
the asymptotic spheres. As we will see in the next
section when we calculate the amplitudes of the
mirror-reflected and Bragg-diffracted waves, this
behavior implies that total reflection is considerably
changed by Bragg diffraction in that region and that
the angular regions of total reflection and of Bragg
diffraction are not well separated.

III. THE REFLECTIVITY PROFILES

We now set out to calculate both the mirror and
the Bragg reflectivity as a function of the angle of
incidence. Therefore, we have to establish the vacu-
um and the in-crystal wave fields and use matching
boundary conditions. Again, we restrict our con-
siderations to the semi-infinite crystal.

The wave function outside the crystal may be
written as

- -

—f—u(;eikc'r-f—u,,,eik"'.r , (12

¢vac=u0e' ke
where u, ug, and u,, are the amplitudes of the in-
cident, Bragg-diffracted, and mirror-reflected waves,
respectively. The wave vector of the Bragg-
diffracted wave k; may differ from k +G only by a
vector normal to the surface, hence

Kg=K+G+k 81 (13)

where 8 may be defined by setting k2 equal to k?
because of energy conservation. The wave vector
k,, of the mirror-reflected wave is related to the in-
cident wave vector k through (Fig. 2)

K, =K — 2k cosyh (14)

since it has the same tangential component as E, but
opposite normal component.

As we found in the preceding section, inside the
semi-infinite crystal we have to consider only two
wave fields, 1 and 2, with each of them being a su-

perposition of a forward (0) and a Bragg-diffracted
(G) wave,

-

i, K,+6)7

lchryst'_‘ul(o)e r+u1(a)e“

=\ -
2+ G)T

R,F = iR
+up(0e’ 7T fuy(Ge (15)

Here the in-crystal wave vectors K are given as solu-
tions to Eq. (11) together with Eq. (5). Boundary
conditions now require that both the wave function
and its derivative are continuous at the surface, so
that there,

I"vac = l/’cryst (16a)
and
d d
vac = st (16b)
2 e )

These conditions, together with Egs. (8), completely
determine the amplitudes. We note that if we had
omitted the very weakly excited wave field 1, thus
reducing the number of unknown amplitudes, we
would arrive at an overdetermined system of equa-
tions.

We have performed detailed numerical calcula-
tions of the reflectivities as a function of the angle
of incidence for various wavelengths. These wave-
lengths were chosen such that they fulfill the geome-
trical Bragg condition, i.e., the Bragg condition
when refraction is neglected, for shallow to grazing
angles of incidence. The specific situation chosen
was that of the experiment, where Bragg diffraction
was studied at internal (022) planes of a Si crystal
with the crystal surface being parallel to the (211)
planes. Table I lists the parameters significant for
the calculations. With these parameters held fixed,
the reflectivity profile of intensity versus the angle
of incidence was calculated for different selected
wavelengths as shown in Figs. 5—8. There the
geometrical Bragg condition for each reflectivity
profile was satisfied at a specific angle with respect
to the surface.

In Fig. 5 the wavelength was chosen such that it
would fulfill the geometrical Bragg condition at an
incidence angle 2' above the surface. The bottom
part of the figure displays the Bragg reflectivity pro-
file which has a shape still rather similar to the usu-

TABLE 1. Interplanar spacing d, Fourier coefficients
of the crystal potential ¥, and angle B betwen the (022)
planes and the crystal surface used in the calculations.

d(022) 1.920 A
V(0) 5.40% 108 eV
V(022) 5.24% 1078 eV
B 54.74°




7244 A. ZEILINGER AND T. J. BEATTY 27

» 10
2 0.8
[$]
[\
= 0.6
D
a
0.4
s
to0.2
=
0.0 1 ] | i
R.+R
G
lob=m—eee— 3 [-——-- o

8.6 8.8 9.0 9,2
Angle of Incidence , ¢ (min. arc)

FIG. 5.  Reflectivities for neutrons of wavelength
A=3.1369 A as a function of the angle of incidence with
respect to the (211) surfaces of a Si crystal. Neutrons of
that wavelength would fulfill the geometrical Bragg con-
dition for diffraction at the internal (022) planes at an an-
gle $p=2' above the surface. The top of the figure com-
pares the mirror reflectivity R,, predicted for the case of
simultaneous Bragg diffraction with the mirror reflectivi-
ty R, in the absence of Bragg diffraction. Rg is the re-
flectivity of the Bragg beam.

al Darwin plateau. The essential modifications are
that the Bragg reflectivity does not reach 100% and
that its plateau height is not constant. This is to be
understood because the radiation is also diverted by
the competing process of surface mirror reflection.
The top part of Fig. 5 shows the mirror reflectivity
curve together with that expected for an amorphous
specimen where no competing Bragg-diffraction
process is present. Here we notice that within the
range of angles plotted this reflectivity likewise does
not reach 100% even below the critical angle. The
reflectivity for angles below the center of the modi-
fied Darwin plateau is always below that of the
amorphous medium while above that region the re-
flectivity is found to be higher. This may be under-
stood from the fact that at low angles we excite a-
branch radiation inside the crystal which has its an-
tinodes at the lattice planes and thus experiences a
lower effective potential. The B-branch radiation

excited at higher angles experiences a higher poten-
tial because it has its nodes at the crystal-lattice
planes. Thus the mirror reflectivity at higher angles
is larger than that of the amorphous specimen. Al-
though neither the mirror-reflected nor the Bragg-
diffracted beams achieve 100% reflectivity, it is in-
teresting that their sum does that very well. In Fig.
5, we also show that a sum of unity is found both
within the modified Darwin plateau and mirror total
reflection ranges as required by the property that in
these regions only exponentially attenuated wave
fields may have sizable amplitude inside the crystal.
Both ranges mentioned above are well separated as
indicated by the dip in the sum reflectivity profile.
Thus at this and at longer wavelengths all four re-
gions as presented in Fig. 3 are observed.

Figure 6 shows the results for a slightly shorter
wavelength beam such that the geometrical Bragg
condition would be fulfilled at 1’ above the surface.
Here a low-angle edge of the Darwin curve can no
longer be identified. Also, there exists no dip in the
curve representing the sum of mirror and Bragg re-
flectivity. Its 100% range extends all the way out to
the high-angle edge of the modified Darwin curve.
This is the case as shown in Fig. 4 where the surface
normal can only cut the dispersion surface at four
real points for angles of incidence above the Bragg
region and not below. Also, here the shape of the
mirror reflectivity curve is strongly modified as

o
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FIG. 6. Asin Fig. 5, but for A=3.1362 A, i.e., g5 =1".
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FIG. 7. Asin Fig. 5, but for A=3.1356 A, i.e., 5 =0'"

compared to the reflectivity of the amorphous speci-
men. These features are essentially retained at
shorter wavelengths. Figures 7 and 8 show the re-
flectivities for neutrons fulfilling the geometrical
Bragg condition at exactly grazing incidence or even
at negative angles of incidence. An interesting prop-
erty of these latter cases is that the kink in the mir-
ror reflectivity due to the high-angle limit of the
modified Darwin plateau has now moved so close to
the critical angle for the amorphous specimen that it
appears as if that critical angle were shifted up to
higher angles of incidence. For all of these curves,
the peak of the Bragg reflectivity occurs at angles
above the total reflection critical angle, although
some reflectivity may still be observed at smaller an-
gles due to the shape of the modified Darwin curves
similar to the x-ray case.

In all of these cases the angular position of the
Bragg peak is strongly shifted with respect to the

geometrical Bragg law because of pronounced re-
|
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FIG. 8. As in Fig. 5, but for A=3.1349 A, i,
dp=—1"

fraction at the entrance surface. Conventional
dynamical diffraction theory' predicts for this shift

_ _VO)V/E
B 2sin(26,)

coSYg
singp

) a7

where 65 is the geometrical Bragg angle and ¢5 is
the angle of the geometrical Bragg position above
the surface. The conventional theory also predicts
the width of the total reflection region to be

_ 2V(G)/E | cosys
sin(26p) | singp

Rusticchelli’ has pointed out that these relations
must break down for grazing angles of incidence be-
cause the conventional theory assumes the asymp-
totes to the hyperbolic parts of the dispersion sur-
face to be straight lines. Using circles as the asymp-
totes, he obtains from purely geometrical considera-
tions

(18)

. 172
. : singp  (0) cosYg
805=1{— 2 /
B l singp + [sin“dp 4+ sn(20,) E Sind, cosdp cosdp (19)
for the deviation from the geometrical Bragg law and
. —172 -
. .5 singp  ¥(0) COsYg 2V(G)/E | cosyg
w =sindp |si
G |SiINGs+ G 00, E singy | 098 sin(205) | sing (20)
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for the width of the Darwin plateau. We have com-
pared these expressions with the results obtained
from our dynamical theory calculations for the case
defined above, i.e., a fixed angle between reflecting
lattice planes and crystal surface. Thus the wave-
length had to be varied for obtaining values of w and
6605 as a function of ¢p.

Figure 9 shows the deviation from the geometrical
Bragg law as determined from the center position of
our numerically generated modified Darwin curves
together with both that of the conventional expres-
sion and of the Rusticchelli formulation. It is evi-
dent that the agreement with the latter is excellent.
We need to explain how the center of the Darwin
plateau was obtained for those curves where the
low-angle edge of the plateau is not defined as is the
case in Figs. 6—8. For such cases we selected the
center to be that position where the modified mirror
reflectivity agrees with that of the amorphous speci-
men as indicated in the top part of these figures.
This is a sensible definition since at that position the
surface normal passes through the Lorentz point,
the center point of the hyperbolic part of the disper-
sion surface. We remark that for all of the curves
where the lower angle edge of the Darwin plateau is
clearly defined, its center position coincided with the
point as defined above. Thus it appears that
Rusticchelli’s expression is valid even for wave-
lengths where the geometrical Bragg condition is

IN » ® ) ~ s > ®

Deviation from Geometrical Bragg, 88(min.arc)
n

L L L L I I I A L I
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Angle of Incidence for Satisfaction of
Geometrical Bragg Condition (min. arc)

FIG. 9. Deviation from the geometrical Bragg law for
diffraction at internal (022) planes as a function of the an-
gle of incidence with respect to the (211) surface. Our nu-
merical results (O ) obtained by using the complete expres-
sion for the dispersion surface are compared both with
Rusticchelli’s equation (bottom curve) and with the pre-
diction of the conventional dynamical theory.
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FIG. 10. Comparison of our numerical results for the
Darwin plateau width (O) with Rusticchelli’s equation
(bottom curve) and the prediction of the conventional
dynamical theory.

satisfied at incidence angles below the surfaces (neg-
ative ¢p).

Figure 10 shows the width of the Darwin plateau
as obtained from our numerical calculation together
again with the prediction from conventional theory
and from Rusticchelli’s modified equation. Again
excellent agreement with the latter is observed for
the points shown. Here we did not include any
points at low incidence angles where the low-angle
edge and hence the width of the Darwin plateau are
not defined anymore. One indication that
Rusticchelli’s expression has to break down for very
small angles is seen from the property that he
predicts w =0 for ¢z=0, which obviously is not
true if we refer to Fig. 7 which pictures just that
case and shows a finite angular width Bragg reflec-
tivity. This breakdown of Rusticchelli’s approach is
due to the fact that at these small angles the modifi-
cation of the hyperbolic part of the dispersion sur-
face by the fact that its asymptote is a sphere has to
be considered. He considered the dispersion surface
to be hyperbolic at its center and to be a sphere far
away with no analysis of the intermediate behavior.
An important point to be emphasized is, that at low
angles of incidence, the width of the Darwin plateau
is not proportional to the integrated reflectivity as is
the case at high angles of incidence. This arises be-
cause the height of the Darwin plateau differs from
unity at low angles of incidence. In fact, it varies
with the angle of incidence and this is indicative of



the competing process of mirror reflection.

Another significant quantity is the penetration
depth of the neutrons into the crystal. This penetra-
tion depth is finite for those angles of incidence
where the sum of the mirror and the Bragg reflec-
tivities equals unity and it is quantitatively related to
the imaginary part ¢; of the excitation error [Eq. (5)]
via

1

t= ke, 21
Here ¢ is defined as that depth measured in a direc-
tion normal to the surface where the amplitude of
the neutron wave field has decreased to 1/e of its
value at the surface. Figure 11 exhibits that
penetration depth for A=3.1369 A neutrons as a
function of the angle of incidence both with and
without internal Bragg diffraction. An interesting
feature is that the minimum penetration depth
within the Darwin plateau is found to be only
t =0.36 um which has to be compared with t =15.6
um which is found for symmetric Bragg diffraction
of that same wavelength.

IV. EXPERIMENTAL STUDY

In the experiment, Bragg-case diffraction at inter-
nal (022) planes in a perfect Si crystal was studied
with neutrons incident at grazing angles onto the
crystal surface. The crystal was a cylindrical ingot
of length 205 mm and about 54 mm diameter with
axial direction parallel to the [111] crystallographic
direction. One side of the ingot was cut to form a
long flat surface of area 25X205 mm? parallel to
the (211) planes. This implies that a set of diffract-
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, FIG. 11. Calculated penetration depth for A=3.1369
A neutrons both without and with Bragg diffraction at
internal (022) planes (¢5=2").

ing (022) planes was oriented at an angle of 54.74°
with respect to that surface. This surface was used
as the mirror reflecting surface and it was necessary
to be of mirror quality. This was achieved by first
polishing and lapping the crystal surface with dia-
mond grit down to 1 pm size and finally using a
chemical syton polish. The flatness of the surface
was established by fringe observations with an opti-
cal flat and He light. This revealed a continuous
variation of the surface depth of 0.6 um over a dis-
tance of 20 mm on the crystal surface, which is well

within the requirements of the experiment.
A schematic diagram of the spectrometer arrange-

ment is shown in Fig. 12. Neutrons reflected from a
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Slit | Slit 2
(0.26 mm) (0.13mm)

Pyrolytic
Graphite
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Slit 3
(0. 18 mm)
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FIG. 12. Schematic diagram of the experiment studying the Bragg diffraction of neutrons at internal (022) planes in Si
under the simultaneous presence of mirror reflection at the (211) surface.
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graphite monochromator were passed through a slit
system to form a beam of 1.16' nominal angular
width at half maximum. The primary wavelength
in this beam was selected to be 3.137 A and mea-
surements showed it be of full width at half max-
imum (FWHM) of 0.029 A. This beam was passed
through an oriented pyrolitic graphite filter for at-
tenuation of the second-order wavelength neutrons
which are normally present.

Both end faces of the crystal were covered with
cadmium absorber plates. This ensured that neu-
trons would enter and leave the crystal only through
the mirror polished surface. These absorbing edges
were also convenient for aligning the crystal face
parallel to the beam both horizontally and vertically.
Measurements of the surface-reflected beam provid-
ed then a check of the alignment of the apparatus
and also gave an independent determination of the
angular position of the crystal surface relative to the
incident beam.

It is significant that, for very shallow angles of in-
cidence, the Bragg-diffracted beam becomes very
broad and in fact becomes significantly wider than
the 25.4-mm-wide aperture slit in front of the detec-
tor. This stems from the extremely high asymmetry
of the arrangement and the geometrical width W of
the diffracted beam is given as

sin(26y)
f= i Sin ¢ ’ (22)
where W; is the geometrical width of the incident
beam that had experimentally been determined to be
W; =210 um FWHM.

In order to obtain the full Bragg-reflection inten-
sity, it was thus necessary to correct the measured
intensities for small angles of incidence ¢ by the for-
mula of Eq. (22). To ascertain that the diffracted
beam was actually as wide as given by Eq. (22), a
series of width profiles of the Bragg beam was deter-
mined experimentally for a set of characteristic an-
gular settings of the crystal by screening the detector
with a 12.7-mm-wide slit across the diffracted beam.
Figure 13 gives us an example of the intensity distri-
bution for an angle of incidence of ¢=12.2". For
that angle of incidence we expect widening of the
beam by the factor 265 as is indicated by the expect-
ed beam width in Fig. 13. The measured beam
widths were thus found to be in reasonable agree-
ment with Eq. (22) which was therefore used later to
adjust the experimental intensities.

Since the wavelength band used in our experiment
was very broad on a dynamical diffraction scale, we
could not expect to directly observe the reflectivity
functions as calculated and shown in the preceding
paragraph. Therefore a convolution calculation was
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FIG. 13. A typical measurement result of the width of
the beam after strongly asymmetric diffraction. The
width of the incident beam was 210 um.

performed taking into account the directional spread
of neutrons in the incident beam. Figure 14 shows
the result obtained for the intensity of the Bragg-
diffracted beam as a function of the angular orienta-
tion of the crystal for the assumption of a very
broad wavelength band. We note that only a negli-
gibly small fraction is expected to be Bragg diffract-
ed if the angle of incidence is below the critical an-
gle. Furthermore, a peak is predicted just above the
critical angle. This peak is of considerable interest
and it stems from the property that the shift in
Bragg position from Bragg’s law is always such that

0.3 -

02 -

Reflectivity (arb. units)

| | | {
5 10 15 20 25

. Angle of Incidence,¢ (min.arc)

FIG. 14. Bragg reflectivity predicted for the experi-
mental parameters taking into account both the angular
spread and the wavelength distribution which was broad
on a dynamical diffraction scale.
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it shifts most of the Bragg-diffraction reflectivity to
incidence angles just above the critical angle as may
be seen from Figs. 5—8. It was also found from the
calculations that the position and shape of this peak
is independent of the short wavelength cutoff as-
sumed for the calculations as long as that cutoff is
at a wavelength whose geometrical Bragg position is
well below the critical angle. This independence is
due to the property that the Bragg reflectivity rapid-
ly becomes very small with decreasing wavelengths
(Figs. 5—8).

All of these predicted features are readily visible
in the experimental result as shown in Fig. 15. We
observe some intensity being reflected below the crit-
ical angle of our primary wavelength. This arises
mainly from the second-order wavelength contam-
ination of the beam and which had been found to be
still 26% of the beam even with passage through the
graphite filter. It is worthwhile pointing out that
the falloff edge of the reflectivity of this second-
order contribution occurs at just half the falloff an-
gle of the first-order radiation corresponding to its
half wavelength. It is interesting to consider the an-
gular position of the high-angle cutoff of the mea-
sured intensity or, equivalently its width since its
low-angle position is being fixed by the critical an-

gle. This width in the experiment is about 26,
which may be compared with the prediction based
on Bragg’s law and our known wavelength spread.
From this we would expect the width to be 44’ and
this was verified experimentally by measuring the
Bragg-reflection width from the same (022) lattice
planes but with a beam incident on the front face of
the crystal, i.e.,, in Bragg geometry without mirror
surface reflection. It appears that this shrinking of
the angular width of the measured Bragg reflectivity
is related to the cutoff at the critical angle. This im-
plies that a significant fraction of the incident beam
never gets into the Bragg-diffraction region due to
its short wavelength.

V. CONCLUDING COMMENTS

An interesting extension of the present experiment
work will concern a detailed study of the Darwin re-
flectivity curves and of the modifications of the sur-
face reflectivity in the vicinity of the critical angle
as shown in Figs. 5—8. Such studies would require
a beam not only collimated to at least the standards
of the present experiment but also better defined on
the wavelength scale, i.e., a beam monochromatized
by perfect crystal diffraction as opposed to the mo-
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FIG. 15. Experimental result: Bragg diffraction at internal (022) planes in Si of neutrons incident at grazing angles
with respect to the (211) surface. The experimentally obtained intensities (O ) had to be multiplied by an experimentally
determined correction factor to allow for the finite width of the detector slit openings. The result also exhibits some dif-

fracted second-order (A /2) intensity.
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saic crystal used in the present study. We are
currently planning to do experiments of this kind.

The experimental and theoretical results of the
present work should also be of interest for future
diffraction studies of surfaces. The reduction of the
penetration depth for radiation Bragg diffracted in
the vicinity of the critical angle may prove useful
for studying structures at depths within- fractions of
micrometers from a surface. For experiments of
that kind our observation of a peak in the diffracted
intensity just above the critical angle should help to
overcome some of the intensity problems expected
from the restricting requirement of a good angular
definition of the beam used.

On the other hand, in agreement with the experi-
ment, the property that only a very small Bragg re-
flectivity is predicted for radiation incident at angles
just below the critical angle should be applicable to
experimentally separate diffraction by the bulk of a
specimen from diffraction by a surface layer. To
discuss that case we assume the index of refraction
of the surface layer to be larger than that of the re-
fractive index of the bulk which is taken to be small-
er than unity. In such a case we could conceive of a
situation where radiation is incident at an angle just
below the critical angle of the bulk material, thus
observing only diffraction from the surface layer. A
particular example where an arrangement of this
type may prove to be useful could be the diffraction
from the surfaces of ferromagnets'® in order to

analyze the behavior of the magnetization close to a
surface boundary. Here the appropriate conditions
for the critical angles could be met by the use of po-
larized neutrons.

It is evident that similar considerations would also
apply to the case of x-ray diffraction. Furthermore,
we note that in many of these surface diffraction
cases we expect the diffraction problem to be that of
diffraction from a two-dimensional lattice due to the
small thickness of the surface layer. A similar
behavior was predicted by Vineyard'® for diffraction
below the critical angle and it will be interesting to
compare in detail his approach with the one present-
ed in this paper.
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