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ABSTRACT. A new formulation of total unsharpness in radiography  based on line spread 
and edge spread  function analysis is established and investigated.  The  unsharpness 
contributions  due to (1) screen conversion, (2) object  motion and (3)  geometric effects 
are incorporated into a general integral  formulation. Comparisons with experiments 
are  undertaken  and  the  ambiguity,  as well as limitation, of a widely used empirical 
unsharpness  formula is clarified. 

1. Introduction 
Spiegler a,nd Norman  (1973)  have re-emphasized the  state of ambiguity and 

confusion which exists concerning the correct  analytical  representation of the 
total unsharpness  in  radiography.  Basically, the problem involves both  the 
form of the function and  the  magnitude of the exponent  in  the empirical total 
unsharpness  formula 

rr, = (U;  + U; + UF)l’n. (1) 

Here U, is the geometric  unsharpness, U, is the motion  unsharpness and U, is the 
screen  unsharpness.  Historically,  values of n = 1, 2 and 3  have been proposed 
by Bouwers (1936), Newel1 (1938) and Klasens (1946) respectively.  Although 
the above empirical formula is widely used,  numerous textbook  authors  have 
expressed both disquiet and  caution  about  the use of the above  formula 
(Seeman 1968, Herz 1969, Christensen,  Curry and  Xunnally 1972). 

The  purpose of this analysis is to develop an alternative-and we believe a 
more correct-formulation regarding the  total unsharpness  in  radiography. 
The  analytical and conceptual  foundation is based on  both physical and 
mathematical  plausibility  arguments. In  addition, recourse to experimental 
results will be made and suggestions for its  application will be introduced. 

2. Functional analysis 
As our  starting  point we consider the experimentally  obtainable film optical 

density  associated  with an ideal  radiation-absorbing  knife-edge  object  as 
illustrated in fig. 1. Of specific interest  is  the  trace of a  microdensitometer 
across the edge of the image which we assume to be smoothed to represent  a 
statistically  reproducible  monotonically increasing S-shaped optical  density 
function ; we will call this  the edge spread  function (ESF) and symbolically 
represent it  by #(x, a). Here,  as  suggested  in fig. 1, x is the position variable 
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referenced to zero at   the perpendicular  coordinate of the knife-edge object  and a 
is a  vector composed of suitable  systems  parameters  such as film type, energy of 
source, etc. For convenience and generality we assume that  the ESF, S(x ,  a), is 
suitably normalized to  the asymptotes to yield S(  - CO, a) = 0,  and S(  +CO, a) 
= 1 (fig. 1). 

L I [ = x *  

, """ ~~ 

Microdensitometer 
trace, 5 ( x ,  a I 
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Fig. 1. Schematic representation of a radiographic imaging system  illustrating main 
component and film optical density associated with a knife-edge object. 

We may  relate the edge spread  function, ESF, to  the line spread  function 
(LSF), L(x ,  a) (Spiegler and Korman 1973) ,  by  the  dual integral-differential 
relations of 

a L(x ,  a) = N--(x, a) ax (2) 
or 

S ( x ,  a) = N-l L([ ,  a) d[ 
L m  

(3)  

where N is a  normalization  factor as required. 
Either  the ESF or the LSF could be used to define an unsharpness of the optical 

image of the knife-edge object, fig. 1. We note that in  practice the ESF will be 
relatively  smooth  without  discontinuities;  indeed  a  sharp  discontinuity could 
develop  only in  the limit of an idealized geometric  unsharpness in  the  total 
absence of screen and motion  unsharpness.  Thus, the relative  smoothness of the 
ESF and  the continuity of its first  derivative is a  reasonable  assumption to make. 
A definition of unsharpness,  accepted  by  convention, is thus required.  We will 
consider several possibilities and will make clear that our subsequent  analysis 
may be adapted  to either of these definitions. 

3. Definitions of  unsharpness 
The  practising  radiographer  may find a  definition of unsharpness  based  on 

visual  discrimination  most  convenient. For example, the 10-90% toe-and-heel 
coordinate of the ESB could be used to give the unsharpness  in units of length. 
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If we therefore choose x, and  x2  by  the conditions 

#(x,, a) = 0.1 and #(x,, a) = 0.9 (4) 

then  the unsharpness is given by 

U = x2-x1. (5) 

A mathematically  convenient definition may be the inverse of the slope of the 
ESF at  the point of inflection xo: 

Or, if the optical  density  variation  near the  asymptotes is of particular 
importance, choose a  convenient  value  for #(x,, a) and #(x2, a) to define x, and 
x2 and use 

Further,  in view of the unambiguous  relationship between the ESF and LSF, 
eqn (2) and  eqn (3) ,  we could use the full-width-at-half-maximum of the LSF; 
that is 

U = xo-x" 

where x; and  xi  are chosen by  the condition 
2 1  (8) 

ax ; ,  a) = -W;, a) = @(x, a),,,. (9) 

Finally, we mention the possibility of the  standard  deviation of the LSF as  a 
suitable  unsharpness definition : 

(x - Z ) 2 L ( x ,  a) dx . I' 
In  listing the above possible definitions of unsharpness, we do not wish to pro- 
mote one of the definitions over all others;  the  matter of convenience of use will 
obviously decide that question ; we do, however, wish to emphasize the need for 
consistency in  the use of unsharpness  in  presenting  analytical and experimental 
results.  The alternative, of course, is the full  representation of the ESF, or LSF, 
which we will consider shortly. 

4. Components of unsharpness 
We refer to fig. 1 to emphasize the physical-geometric system of interest  and 

consider fig. 2(a) as one special case:  a stationary knife-edge object and 
collimated beam of radiation. Clearly, in  this case both geometric and motion 
unsharpness are zero and therefore, for this case, we define the ESF by 

#&x, a) = ESF associated  with screen unsharpness  only. (11) 

The  subscript S is used to identify the effect due to screen unsharpness. 
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We now consider the above case but modify the  radiation source to produce a 
geometric  unsharpness effect. Specifically, we consider a  slit of width a of 
isotropic  radiation in  the source plane, fig. 2(b). A geometric unsharpness 
parameter p is  introduced  in the usual  manner 

a1 
P " = Z  

where l is the object-to-image  distance and L is the source-to-object  distance. 

"Film optical 
density 

- Image  plane SpeedLC 
[ c )  l 

f l f t t  
Source plane 

Fig. 2. System characteristics associated with (a )  screen unsharpness, ( b )  geometric 
unsharpness and (c) motion unsharpness. 

Clearly, then,  the combined unsharpness effect of both screen conversion and  the 
geometric condition on the  resultant ESF is now given in  integral  form  as 

X,(x + X', a) dx' 

where the subscripts (s,g) are used to indicate  the combined screen and geo- 
metric  unsharpness  contribution.  Note that  this ESF represents an integral 
relationship between the screen and geometric unsharpness rather  than  an 
independent  additive  relation  as  provided by  the empirical formula,  eqn (1). 
We note  in passing that if the  radiation source were not isotropic then a weight- 
ing  function p(x') would need to be included in  the  integral,  eqn (13). 

Returning to  the case of a collimated beam of radiation, we allow the knife- 
edge object to move in  the negative-x  direction  with  a speed v while the exposure 
time is T (fig. 2(c)). The  resultant ESF, now including both screen and motion 
unsharpness effects, is given by 
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Combining the  three  independent effects-screen, geometry and motion-and 
assuming a  non-isotropic  radiation source, yields an ESF given in  general form by 

Thus, for the complete and correct evaluation of the  total image unsharpness it 
is only necessary to  integrate  the  appropriate ESF, SB(x, a). We  now consider the 
specification of such  a  function. 

5. Edge  spread function  representation 
We follow the common practice of identifying  a physically plausible LSF and 

from it obtain  the ESF according to  eqn (3).  In fig. 3 we show graphically  four 
potential  candidates based on their relevance in  related  studies : (1) rectangular, 

Dlstance,x 

Fig. 3. Schematic and analytical representation of four  line spread functions (LSF). 

(2) Gaussian, (3) Lorentzian and (4) exponential ; their corresponding functional 
representations are also shown in  the same figure. By  visual comparison with 
the exacting  experimentally  obtained X-ray  data  as  reported  by Rossmann, 
Lubberts  and Cleare (1964) we reject the  rectangular  function  as  too gross an 
approximation.  The Gaussian function  is  too large near  the origin and too 
shallow in the wings. Both  the Lorentzian-which has been found  very useful 
in spectroscopy (Shore and Menzel 1968) and  in  neutron  radiography  (Harms, 
Garside and Chan 1972)”and  the exponential previously used by Rossmann 
et al. (1964) provide  a  reasonably good fit depending  upon the range of x  chosen; 
numerical  curve  fitting  has shown that  the Lorentzian  can  provide  a better fit 
with  experimental data for x close to zero while the  exponential seems to fit 
better for larger  values of x. We  have chosen to  adopt  the  Lorentzian,  rather 
than  the exponential, for the following reasons: 
(a )  The  exponential provides a  physically  unreal  representation at  x = 0 by 

virtue of the non-existence of a slope a t  this  point; we point  out  that  the 
Rossmann et al. (1964) experimental data show a zero slope a t  x = 0. 

( b )  The  major  contribution of the LSF comes from the domain of x close to zero. 
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Thus,  the ESF for the screen conversion process to be used in our  subsequent 
analysis is given by eqn  (3) : 

where the normalization  factor N has been so chosen to  give SI(x, c) + {0,1>  as 
x+{- CO, +m>. Also, the systems  vector a is fully defined by one systems 
parameter c. This dispersion parameter can be readily  obtained by curve 
fitting  eqn (16) to  an experimentally  obtained knife-edge image scan for the 

[ 
this work 
(Lorentzian LSF 
with c:IO-'pm-*) 

1 -  

+ experimental 
/W+-* (Rossmann et al. 196L 

I '  I 1 
-300  -200 -100 0 100 300 

Distance, x ( p m )  
Fig. 4. Comparison between experimental optical density data  and  the Lorentzian edge 

spread  function: screen unsharpness effect only, S8(z, c). 

case of a stationary knife-edge object  with  a highly collimated radiation  beam 
and having the  object sufficiently close to  the film to eliminate geometric 
unsharpness  contributions. Clearly, it is  expected that c will vary  with film 
emulsion used, type-if  any-of intensifying  screen, and  in  addition  may 
exhibit  a dependence on radiation  energy.  Thus, it is a  constant of the  radio- 
graphic  system. 

In  fig. 4 we show a comparison between the Lorentzian ESF, eqn (16)) with 
the published  experimental data of Rossmann et al. (1964) ; the dispersion 
parameter used was c = pm-2 and  the  data was normalized to zero and 
unity  at f 280 pm. Similar agreement for other screen-film combinations in 
neutron  radiography  has been found (Harms et al. 1975). The fit between the 
Lorentzian ESF and  the experimental data is clearly very good and seems to 
justify  its wider use in  radiography. 

The ESF which incorporates  both screen and geometric effects, eqn (13)) is 
now, with  the use of eqn (le),  given by 

= - + - tan-l [&(x +p)] +- {tan-l [&(X + p)] - tan-l (x+)} X 

2 7 r  P 
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We observe that this screen-geometric effect ESF retains the characteristic 
symmetry  and  asymptotes of the screen ESF of eqn  (16)  as I x 1 Bp.  

The corresponding ESF for the case of screen and motion effects is given in an 
analogous manner, 

tan-1 [&(x + m ) ]  + - {tan-1 [&(x + W.)] - tan-1 (zJc)} 
X 
wr 

1 
+ 2v7Jc + c ( 2  + wry )]). 

We  note that  the algebraic form of eqn (18) is  equivalent to  that of eqn (17) 
with p being replaced by WT. 

The ESF which incorporates  all three unsharpness contributions-screen, 
geometric and motion-follows by  an  integration of either  eqn (17) over 
t E (0, r )  or of eqn (18) over x’ E (0, p). However,  these  integrations  lead to 
functionally intractable  and numerically cumbersome expressions and would 
clearly  represent an inconvenience if they  had  to be performed every  time a 
radiograph  with  a different set of c, p and wr were examined. It is clear though 
that a  computer  calculation of tables of unsharpness, based on one or two of the 
suggested definitions, could readily be accomplished and  appropriately circu- 
lated. These tables-or graphical  representations thereof-could be reasonably 
compact since only three  independent  variables  are  involved: c, p and WT. Thus, 
in principle this new formulation of image sharpness could be incorporated into 
the  practice of radiography. 

We now  wish to develop some useful generalizations and extensions on 
radiographic image unsharpness  based on the methodology suggested here. 

6. Generalizations  and  extensions 
As we indicated  previously, the two ESF for screen-geometry effect, eqn (17), 

and screen-motion effects, eqn (18), are functionally  identical.  We define 
therefore 

p = al/L,  if no motion  unsharpness  exists 
Ug/m = i wr, (19) 

if no geometric unsharpness  exists. 

That is Uglm represents geometric unsharpness or motion  unsharpness but  not 
the sum of both;  this  latter  point might be relaxed if the error  introduced  is 
acceptable.  The  substitution of Ugim in  eqn (17) or eqn (18) makes it  apparent 
bhat if we introduce  a  linearly  transposed position variable 
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and define 

(2la) 

(21b) 

Then the transposed ESF which incorporates  either  screen-geometry or screen- 
motion  unsharpness is given in  a  symmetric form with  respect to x+ and x- 

#(X*, Uglm, C) = - +- - (tan-lx+ + tan-lx-) +- (tan-lx, - tan-lx-) 
X* 

2 7 2  ? Ug/m 

- 1 ~ c  2ug/m [In(')]). 

This  transposed ESF possesses the property of reflection 

-#(-X*, Ug/m,c) = #(X*, Ug/m,C), (23) 

#(x*, Ugtm, c) +S( -x*, c) = 1 (24) 

normalized summation 

and a  point of inflection a t  x* = 0,  that is a t  x = - Ug/m/2. 

We show some interesting  properties of the ESF in fig. 5 where, for clarity of 
presentation,  the dispersion parameter  has been set to c = 1. For Uglm small, 

I I I I I , I ' 1 ' 1  I '  

-60 -LO -20 0 20 LO 60 
Distance, x* 

Fig. 5. Change in  the edge spread  function (ESF) with increasing  geometric or motion 
unsharpness; U,,, and z* are in units of l/&. 

fig. 5, the ESF shows the smooth  shape  associated  with the specialized experi- 
mental data of Rossmann et al. (1964), fig. 4 and  eqn (16). As increases, 
however, an increasingly pronounced linear  domain about x* = 0 becomes 
evident, fig. 5. This trend is physically obvious:  with c = constant,  the screen 
unsharpness is constant,  and  as Uglm increases the geometric unsharpness or 
motion  unsharpness became more dominant  and linear by  virtue of eqn (19). 
The screen unsharpness  contributes to smoothing the curve at  the corners which 
is particularly  apparent for Ugim = 100. 
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7. Correlation  with  the  empirical  unsharpness  formula 
As developed herein,  eqns (16),   (17) and (18) are viewed as providing the more 

correct  description of image sharpness  in  radiography.  We wish to use these 
representations and  relate  them to  the empirical unsharpness  formula,  eqn (1) .  
Specifically we wish to enquire,  as Spiegler and Norman (1973) did,  about  the 
choice of the exponent n in  eqn (1)  under conditions of a specific definition of 
unsharpness. 

In  an initial  observation we point  out that whenever one of U,, U, or U, in 
eqn (1) dominates, that is it is significantly larger than  the  other(s),  then  the 
choice of exponent is irrelevant because 

q 21 (Ujn)l'n (25 ) 

for any positive n with j being one of g,  m or S. Indeed, it is most important to  
have  a  correct  value of n whenever the unsharpness  components U,, U, and U, 
are of similar magnitude. As our  operational definition for the  total unsharpness 
we  choose to use the inverse slope, eqn (6) ,  and hence using eqn (22) obtain 

The screen unsharpness U ,  is similarly obtained using eqn (16) since we require 
Ugtm = 0,  

Dividing eqn (26) by  eqn (27)  permits the representation of unsharpness in 
dimensionless form as 

Thus we have q/U, expressed as a  function of U,/,/U, within the  context of the 
formalism developed here. Employing the empirical formula  eqn (1) for screen 
and geometric unsharpness only leads to  the companion expression 

The comparison between eqn (28) and  eqn (29) for n = 1, 2 and 3 is shown 
graphically  in fig. 6 and clearly shows that neither of the  three  integer values of 
n is  correct.  Within the  context of the unsharpness definition used here,  eqn 
(26),  the  exponent n is greater than 1 but less than 2 ; indeed it is a  function of 
the  ratio UJV,. We  have  evaluated  this dependence by equating  eqn (28) with 
eqn (29) and solved this  transcendental  equation  by  iteration.  The  results  are 
shown in fig. 7 and clearly indicate this dependence.  Thus, the empirical 
formula,  eqn (l), could in principle still be used providing .n is extracted from 
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fig. 7 .  As a  rule of thumb we may suggest that, since the correct value of n is 
most important when 

U,? U, (30) 

then,  by fig. 7, one should use 
n-N 1.55. (31) 

6t 

P l 

0 2 L 6 
Unsharpness ratlo, U, /U, U&,,/Us 

Fig. 6. Comparison of unsharpness ratios based on the use of the empirical formula for - 
various n. 

*.O t 

1 .ol , I I , , , 1 1 1  I 
0.1 1 10 

Unsharpness ratio, U,/U, 

Fig. 7. Dependence of the exponent n in the empirical formula on the unsharpness ratio 
U,! us. 

8. Concluding  comments 
It is apparent  that  the  exact specification of total unsharpness  in  radiography 

involves several analytical  and  numerical considerations. The  most  satisfying 
method would seem to  be the specification of computer  generated  tables  based 
on  eqns (16), ( 1 7 )  and (18), as well as numerical  integration of these last two 
equations. Since only  three  independent  parameters  are  involved, c, p and VT, it  
is clear that  this could still be a  most useful tabulation. The  alternative  is to 
use n N 1.55 recognizing that although it is an improvement over the historically 
used values of n = 1, 2 or 3, it is an average  value and could be improved  upon 
by calculating UJU, and using fig. 7. 
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R ~ S U M E  
Une nouvelle formulation  de flou total en  radiographie 

On a Btabli et Btudib une nouvelle formulation du flou total en  radiographie, basbe sur l’analysa 
des fonctions  de  propagations lidaire  et marginale. Les contributions du flou dues a (1)  la 
conversion sur Bcran, (2 )  les mouvements du  sujet  et (3) les effets g6omBtriques sont incorporBes 
dens une formulation intbgrale gBni.rale.  On a effectui. des comparaisons avec des exphiences, 
et l’ambiguiti., ainsi que la limitation, d’une formule de  flou empirique d’un emploi courant sont 
bclaircies. 

ZUSAMMENFASSUNG 
Eine neue Formulierung  der totalen Unschtirfe in  der  Radiographie. 

Basierend auf einer Analyse der Iinienverbreiterungen  und Kantenverschmierungen wird eine 
neue Formulierung  der totalen Unschiirfe in der  Radiographie vorgelegt und  untersucht.  In einer 
Integraldarstellung werden die einzelnen BeitrPge zur Gesamtunschirfe  aufgrund des (1) Kon- 
versionsprozesses, (2 )  der Bewegung des Objekts  und (3 )  der geometrischen Effekte zusammen- 
gefasst. Vergleiche mit Experimenten werden unternommen und die Cnklarheiten der iiblicher- 
weise verwendeten empirischen Formeln  der UnschBrfe werden beseitigt und deren Beschrank- 
ungen aufgezeigt. 

P e s m ~ e  
HOBOe I#lOpMyJIHpOBaHHe o6weii pa3MbITOCTH B paAHOrpa@HH 

CTaTbR  yCTaHaBJIHBaeT H HCCJIeAyeT  HOBOe  @OpMyJIHpOBaHHe o6meii pa3MbITOCTH B p a a H O r p a @ H H  
H a  OCHOBaHHH aHaJIH3a @YHKUHfi pa36poca JIHHHii H KpaeB.  B 06uym eAHHyIo   4OpMyJIy  BKJIIOYeHbI 
4aKTOPbI  pa3MbITOCTH,  BbI3bIBaeMOE (1 )  3KpaHHbIMH  lTpeO6pa30BaHHRMH, (2) I IepeMeIueHHeM 
0 6 5 e K T a  H (3) ROMeTpHYeCKHMH  344eKTaMPi.  npIlBOnRTCR  CpaBHeHHR C 3KCilepHMeHTaMH H p a s % -  
RCHRH3TCR HeOilpeAeJIeHHOCTb H OrPaHHYeHHOCTb  LUHpOKOHCnOJIb3yeMO~  3MIIHPHYeCKO~  @OpMyJIbI 
pa3MblTOCTH. 
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