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Abstract

Studies on the H,0-D,O diffusion process using neutron
radiography are herein reported. It is shown that the H,O-
HDO-D,O concentration profiles obtained experimentally
are characterized by an universal dependence on the distance
from the initial separation face divided by the square root of
the diffusion time. Furthermore, numerical values describing
the rate of mixing have been determined.

Zusammenfassung
Neutronenradiographische Untersuchung des H,0-D,O-Diffusionsprozesses

Uber neutronenradiographische Untersuchungen des HyO-D,O-Diffusions-
prozesses wird berichtet. Es wird gezeigt, daf3 die durch das Experiment
erhaltenen H;O-HDO-D;O-Konzentrationsprofile durch eine allgemeine Ab-
héngigkeit von der Entfernung von der urspringlichen Trennfldche, dividiert
durch die Wurzel aus der Diffusionszeit, charakterisiert werden kdnnen.
Numerische Werte, die das Durchmischungsverhalten beschreiben, wurden
bestimmt.
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1. Introduction

One of the most efficient applications of neutron radio-
graphy is based on the fact, that the neutron attenuation
coefficient of the hydrogen isotope 'H is exceptionally high,
therefore, hydrogen may be detected by neutron radio-
graphy under experimental conditions where X-ray or y-ray
radiography fails to give meaningful results [1; 2]. Some
typical applications in this field are the inspection of metal
adhesives, explosives, hydride in metals and similar prob-
lems [3]. The first application of neutron radiography on the
investigation of hydrogen diffusicn was reported by Chountas
and Rauch [4]. They studied the H,O-D,O diffusion process
and found some discrepancies with simple diffusion theory.
Later on more detailed results including also the methanol
diffusion process were obtained [5]. A more detailed study
of the phenomena required some additional experiments
were made and are here presented.

2. Experimental method

For the inspection of non-radioactive samples the direct ex-
posure technique can be used. Here a photographic film is in
contact with a Gd-foil and is exposed to the neutron beam
which has passed through the object. The film is blackened
by internal conversion electrons following the capture of
neutrons by gadolinium. Fig. 1 shows the setup at the beam
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Fig. 1: Neutron radiography installation at the TRIGA reactor Vienna
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Fig. 2: Calibration curve: optical density as a function of the mixing ratio
of H,0-D;O

hole of the TRIGA Mark Il reactor, Vienna. The gamma
component of the beam is reduced by an 8 ecm thick poly-
cristalline Bi-filter. The conical collimator provides an effec-
tive “point source” of neutrons. The inner diameter for our
experiments was 17 mm. The diffusion process was studied
using an Al-container with a 5 mm space for the water which
was held at a constant temperature of 25 £ 0.01 °C. To avoid
any condensation of water at the outer side of the aluminium
and for thermal isolation, the container was surrounded by
an evacuated jacket. To obtain quantitative results, a cali-
bration was made by radiographing a series of standard
mixtures (0, 10...90, 100% D,0). For each mixture three
radiographs were made and the mean value was used. At
the beginning of each diffusion process the container was
filled up to half its height with D,O, on to which a layer of
H,O was very carefully deposited using an inverted tube,
Fig. 2, to avoid any inadvertant mixing of the two liquids.
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Fig. 3: The diffusion cell with the inverted tube used for the deposition of
H,O on to D,O without inadvertant mixing
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Afterwards, radiographs were taken at different times. The
exposure time of all radiographs was 5 minutes. Fig. 3 shows a
typical neutron radiograph. The radiographs were scanned
using a microdensitometer with a slit width of 75 um and
2.5 mm in length. This slit was oriented parallel to the initial
separation face of the two liquids. All films used were taken
from the same film package (OSRAY TA T4 DW film) and
were developed together under identical conditions.

3. Results

The calibration curve is shown on Fig. 4. We point out, that
on the abscissa we have not plotted the actual concentration
of D,O for the following reasons. Because of the dynamic
equilibrium,

D,O + H,O ==2HDO,

Fig. 4: Neutron radiograph of the diffusion cell taken before the measure-
ments to adjust the inverted tube and the temperature sensor. Note, that
the tube is filled with H,O

each mixture of heavy water and light water is accompanied
by a certain concentration of HDO. The amount of HDO can
be determined using the law of mass action governing the
concentrations C as follows:

Therefore the calibration curve represents the optical density
as a function of the volumes of D,O and H,O before mixing.
This calibration curve can be used to convert the micro-
densitometer readings of the radiographs of the diffusion
process to concentration profiles. By this method one ob-
taines concentration profiles as shown in [5]. Any evaluation
of these profiles is readily accomplished by assuming that
the system is spatially unlimited [6], which is fulfilled in our
case because
2Dt < L?

where D is the diffusion coefficient, t is the diffusion time
and L is the linear expansion of the system in the direction
of diffusion. The concentration profiles then can be used to
determine the diffusion coefficient as a function of concentra-
tion. This procedure was repeated in the present work thus
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Fig. 5: Spread of the initial D,O distribution by the diffusion process. The
ordinate does not show actual concentrations but mixing ratios of com-

positions giving the same optical density. For different values of x/}% one
obtains the same curve

confirming the previously found form of the concentration
dependence. Furthermore, we used the observation that for
most diffusion processes the concentration is a function of
x/Vt where x is the distance from the original border of the
two substances and t is the time elapsed since the beginning
of the diffusion process [6]. When this holds, all concentration
profiles obtained at different diffusion times coincide when
plotted as a function of x/1/t. Fig. 5 shows this “normalized”
concentration profile for the diffusion process investigated
and clearly confirm the validity of the x/ 1/t dependence. From
this curve the concentrations of H,O, D,O and HDO were
determined using the law of mass action with K = 3.96
[7] for any x and any t. Fig. 6 shows the concentrations as a
function of x/1/t. As can be seen for |x/Vt] >1.5 X% 102 cm
s™2 only two components coexist whereas in the intermediate
values we have coexistence of H,O, HDO and D,O. From
this figure the amount of HDO per unit area of the initial
separation face present as a consequence of the diffusion
process was found to be

mppo = 1.13-102 1t (g/cm2)

This number was obtained by integration of the HDO-con-
centration profile. From that figure we get the rate of produc-
tion of HDO as

mypo = 5.6+ 103Vt (g/cm?s)
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Fig. 6: Concentration profiles of H,O, HDO and D,O as a function of the
“‘reduced distance'’ from the initial separation face between H,O and D;O
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that is, the production rate decreases with the square root of
the diffusion time. These values are important in cases where
H,O and D,O might mix such as in D,O-moderated H,O-
cooled nuclear reactors and in heat exchangers of D,O-
cooled reactors.

4. Concluding comments

We have used neutron radiography as the diagnostic tool
to measure the diffusion process of light and heavy water.
Both, a general characterization of the diffusion process has
been identified and specific numerical values describing the
mixing process have been evaluated. For that applications
neutron radiography is superior to other techniques because
the results can be obtained in principle by taking only one
neutron radiograph of the diffusion process.
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