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1 Introduction

One of the student experiments at HEPHY is the measurement of the muon
live-time. Details for the setup of this experiment can be found in separate
documents. In the following the focus will be on the analysis of the obtained
data and their statistical interpretation. Although all examples will be for the
measurement of the muon live time, the methods described in the following can
easily be expanded for other measurements.

Just a short reminder: we are measuring the time difference between the
time a particle enters our experiment and the time a particle leaves the system.
The particle leaving the system can be a different particle than the initial one
(e.g., a muon entering the system, decaying within, and an electron leaving the
system). If we neglect any background sources, the measured time differences t
originate in the decay of muons at rest. The decay of muons at rest is a so called
Poisson process (i.e, the muons decay independent of each other, the probability
for a decay in the time interval [t0, t0 + dt] is independent of the time). Thus,
the probability to observe k decays in a time interval [t0, t0 + t] is given by the
Poisson distribution:

P (Nµ(t0)−Nµ(t0 + t) = k) =
e−λtλkt
k!

(1)

where λt is the expected number of decays in the time interval [t0, t0 + t]. The
probability to observe no decay in the interval [t0, t0 + t] is given by

P (Nµ(t0) = Nµ(t0 + t)) = e−λt (2)

The expected number of decays is given by the so-called live time τµ of the
muon:

λt = (t0 + t− t0)
1

τµ
(3)

λt = t
1

τµ
(4)

Thus, the time until a muon decays follows the distribution

p(t) = e
− t
τµ (5)

Note: The distribution of the time until a muon decays is independent of the
start time. Thus, we can measure the muon live-time of cosmogenic muons
although they are produced in the atmosphere some time before they enter our
experiment.

2 Fitting data

To determine the muon live-time we are going to fit the theoretical distribution
(5) to the measured distribution of time differences. This is achieved by max-
imising the likelihood L(data|Nµ, τ) that a distribution like the measured one
occurs, given that the muon live-time is τ and the number of observed events
Nµ.
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The measured time differences are discrete values (clocks cycles of a 10 MHz
clock, see documentation of the experiment). Thus, in the following we will
focus on binned fit methods. It is assumed, that the width of the time bins
is 0.1µs to match the 10 MHz clock. Later we will discuss the treatment of
different bin widths.

2.1 Maximum likelihood fit

The histogram of the time differences has d bins. Each bin contains bi entries.
Since all bins are independent of each other, the likelihood to observe a his-
togram as the measured one given a muon live-time τ and Nµ events is given
by

L(data|Nµ, τ) =

d∏
i=1

p(bi|Nµ, τ) (6)

where p(bi|Nµ, τ) are the probabilities that bin i contains bi entries given a muon
live-time τ and Nµ events.

In principle, the bin entries bi of a histogram follow a Poisson distribution1.
The likelihood is now given by

L(bi|Nµ, τ) =

d∏
i=1

λi(Nµ, τ)bi

bi!
e−λi(Nµ,τ) (7)

λi(Nµ, τ) = Nµ

∫ ti,up

ti,low

dt
1

τ
e−

t
τ (8)

= Nµ

[
exp

(
− ti,low

τ

)
− exp

(
− ti,up

τ

)]
(9)

where λi is the expected number of entries for bin i, ti,low and ti,up are the lower
and upper boundaries of bin i.

If another model is used for the fit, the integrand for the calculation of the
λi has to be changed accordingly. It is also possible to use this formulation
for multi-dimensional histograms, since the bins can still be numbered by one
integer. Of course, the integral for the calculation of the expectations λi has to
be changed to a multi-dimensional integral.

Now we have to find the maximum likelihood with respect to the free param-
eters Nµ and τ . For our problem (and most other cases) this can only be done
numerically. Maximizing the logarithm of the likelihood is much more stable
than maximizing the likelihood itself:

ln(L(bi|Nµ, τ)) =

d∑
i=1

bi ln(λi(Nµ, τ))− λi(Nµ, τ)− ln(bi!) (10)

There exists a variety of algorithms to minimize2 functions in several dimensions
we can use to find the best-fit values for the muon live-time τ and the number
of events Nµ.

1This behaviour can change if the histogram is scaled or non-integer values are used for
the bin-entries.

2Maximizing ln(L) is equivalent to minimizing − ln(L).
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2.2 χ2 - fit

The maximum likelihood fit discussed in the previous section can be applied
for all fits to binned data in multiple dimensions, if the binned data represents
counts. However, the calculation of the likelihood takes some computation time
due to the logarithms and the factorial of the Poisson distributions of all bins.
This problem can be avoided, if all bins have large entry numbers. For large
expected numbers the Poisson distribution can be approximated by a normal
distribution. The likelihood can then be written as

L(data|Nµ, τ) =
1

σi
√

2π
e
− (bi−µi(Nµ,τ))

2

2σ2
i (11)

µi(Nµ, τ) = Nµ

∫ ti,up

ti,low

1

τ
e−

t
τ (12)

= Nµ

[
exp

(
− ti,low

τ

)
− exp

(
− ti,up

τ

)]
(13)

where µi(Nµ, τ) is the mean value and σi =
√
µi(Nµ, τ) is the standard devia-

tion of the normal distribution.
Similar to the maximum likelihood fit, this method can also be expanded to

other models and multiple dimensions, by changing the integral for the calcula-
tion of the means µi.

For better numerical stability we have to maximize the logarithm of the
likelihood instead of the likelihood itself:

ln(L(data|Nµ, τ)) =

d∑
i=1

− ln(σi
√

2π)− (bi − µi(Nµ, τ))2

2σ2
i

(14)

In the sum we still have to calculate a logarithm for each bin. However, we
can perform an additional approximation: For large numbers we the standard
deviation of the normal distribution σi =

√
µi(Nµ, τ) can be approximated by

σi ≈
√
bi (15)

This is justified since the relative width of the Poisson distribution (∝ 1√
N

) is

small for large numbers. The square root of the mean value is close to the square
root of the bin entries. With this approximation the logarithm of the likelihood
is given as3

ln(L(data|Nµ, τ)) = −d
2

ln 2π − 1

2

d∑
i=1

ln bi −
1

2

d∑
i=1

(bi − µi(Nµ, τ))2

σ2
i

(16)

Only the last part depends on the free parameters Nµ and τ . Thus, the loga-
rithm of the likelihood is maximal with respect to Nµ and τ , if the last part is
minimal. So instead of maximizing the logarithm of the likelihood we have to
minimize the so-called χ2:

χ2 =

d∑
i=1

1

bi
(bi − µi(Nµ, τ))

2
(17)

A χ2 fit runs faster as a maximum-likelihood fit. However, it delivers wrong
results if the bin entries are too small (. 20).

3All bins with zero entries are skipped (σi = 0).
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3 Influence of different binnings

As already mentioned, the measured time differences are discrete clock cycles
of a 10 MHz clock. If we use the same bin width (0.1µs) this will not cause any
problems. Figure 1 shows a time spectrum of simulated data with a bin width of
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Figure 1: A simulated time-spectrum using a bin width of 0.1µs

0.1µs. Here the bin entries are indeed Poisson distributed. Thus, the methods
explained in the previous section can be applied to infer the decay time.

However, if a different bin width is used, it can happen, that some bins
contain significantly more or less events than other bins. This is depicted in

s]µtime [
0 2 4 6 8 10 12 14 16 18 20

co
un

ts

0

50

100

150

200

250

300

350

400

450

sµBin width: 0.13333 

Figure 2: A simulated time spectrum using a bin width 0f 0.1333µs

figure 2 where the bin width is increased to 0.1333µs. In this case the bin
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entries are no longer Poisson distributed. Thus, the methods discussed in the
previous section can not be applied.

It is possible to take this into account by including the discrete nature of the
recorded times into the integrals for the expected bin contents. However, this
procedure is rather complicated and error-prone.

The method discussed in the following will use random numbers to convert
the acquired discrete times to continuous times. This method is easier to use
and can be applied to a wider rage of problems without changing the method.
Figure 3 visualizes the time-measurement procedure. First the muon is stopped

-

time

Muon arrives Muon decays

Clock starts Clock stops

Figure 3: Visualization of the time measurement: The muon arrives and is
stoped in the detector (red). The clock starts at the next available clock cycle
(blue). The muon decays (red). The clock stops at the next clock cycle (blue).

in the detector (red). At the next clock cycle the time measurement (counter)
is started. The measurement (counter) is stopped at the clock cycle (blue)
succeeding the decay of the muon (red). Thus, the real time tmeasured between
the muon entering the system and the decay of the muon is given by:

treal = tmeasured + εstart − εstop (18)

where tmeasured is the measured time (number of clock cycles), εstart is the time
difference between the muon entering the system and the start of the counter,
and εstop is the time difference between the decay of the muon and the stop of
the counter. We do not know the two time differences εstart and εstop. However,
we know that both differences are in the interval [0, 0.1µs[. Thus, to estimate
the continuous time treal we are choosing the time differences εstart and εstop
uniformly from the interval [0, 0.1µs[. We can use treal to obtain the time-
spectrum for the inference of the muon live time.

Figure 4 shows a comparison between the time-spectra obtained from the
measured time values tmeasured (red) and the randomized times treal (blue).
For the blue spectrum the bin contents are again Poisson distributed and the
fit methods discussed in the previous spectrum can be applied.

Of course an additional uncertainty is introduced by this method of estimat-
ing treal. Its influence can be studied by repeating the randomization procedure
and the fit several times and comparing the inferred values for the muon live
time.
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Figure 4: Comparison of the measured time-spectrum and a spectrum of the
estimated (random) times treal.

4 Tasks and questions

The following tasks and questions should be answered to obtain the measured
muon live-time:

1. Simulate the time spectrum with the literature value for the muon live-
time.

2. Which fit method should be used?

3. Apply the fit method to simulated data.

4. Can you reproduce the input value for the live time?

5. Try to estimate uncertainties by fitting a large number of simulated spectra

6. How to deal with backgrounds?

• Determine the fit range

• Model for the backgrounds?

7. Apply the updated fit method to measured data

8. How does the result compare to the literature value?

9. Does the result change for different binnings?

10. Apply the radomize method to the data to account for the binning effects

11. What are the statistical errors?

12. What are systematical errors?

13. Try to estimate the error due to the randomize method

7


