Safety and risk assessment of 1st and 2nd life lithium-ion batteries
![[Translate to English:] [Translate to English:]](/fileadmin/_processed_/9/7/csm_SafeLiBatt_iStock-868516744_web_12cac8a9fa.jpg)
MSc BA
Gloria Rose holds a master’s degree in Human Ecology and is currently employed as a Junior Scientist in projects concerning nanotechnology and sustainable cities.
Gloria studied Biology (MSc) and Prehistory and Early History (BA) at the University of Vienna. She completed her master’s study of Anthropology within the field of Human Ecology, having written her master’s thesis titled "Attitude-Behaviour-Gap of Biology Students in Vienna Regarding Energy Behavior in the Household".
After having concluded an internship at the ITA on the topic of Industry 4.0, Gloria Rose is currently working on the NanoTrust project, mainly concerned with the state of knowledge on potential health and environmental risks of nanotechnology and knowledge communication. Within the project Pop-Up Housing she regards temporary housing as spaces for innovative sustainability.
Past projects include the EDEM project, dedicated to examining experiences had with the employment of digital tools in the areas of participative and direct democracy; Robotics in Austria, which summarized the current status of robotics in Austria; and SafeNanoKap, examining the applicability of the safe-by-design concept in context of development of nanomaterials and -products. Within the SmartCare project she examined the use of information and communication technologies in the healthcare sector of the city of Vienna.
Titanium dioxide has been used as a food additive (E 171) in Europe since the 1960s. For a long time, it was assumed that this waterinsoluble material would not cause any negative health effects because of its low absorption rate. In recent years, however, animal studies have confirmed a dose-dependent toxic potential in the event of oral ingestion, with particular damage to the liver and kidneys, inflammatory reactions, and changes to the spleen and heart. The material was also found to accumulate in organs, and individual studies showed an effect on the intestinal flora and the immune system. One study also makes reference to a possible carcinogenic potential. The European Food Safety Authority (EFSA) rated the substance as safe when ingested orally. Up to 59% of the particles of E 171 can have a size of less than 100 nm. On the basis of the studies available to date, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) sees great uncertainties with regard to possible health effects, in particular because of the high proportion of nanoparticulates. The French government has therefore decided to ban E 171 for one year starting from 01.01.2020. Consumer protection organisations are calling for the ban to be extended to the entire European Union (EU). The industry stresses that E 171 is safe and fears negative economic consequences. However, some confectionery manufacturers have already changed their recipes and no longer use E 171. The European Commission is changing the specifications for E 171 so that it may only contain a maximum of 50% of nanoparticles in the future.
This dossier explores bio-inspired and biomimetic nanomaterials, differentiating between bio-inspired or biomimetic nanotechnology and bio-nanotechnology. Following a clarification of these terms, the basics of bio-inspired and biomimetic nanomaterials are then presented. Subsequently, a systematic classification of synthetic methods of bio-inspired and biomimetic nanomaterials is demonstrated. This classification is based on the method of manufacturing and not on the functionality of the materials. This enables a more coherent correlation with security aspects, which are yet to be defined in many cases. Due to the great variety, a categorization according to material properties or material compositions is not considered practical. In addition to chemical properties and behavior, physical parameters such as size, structure and surface quality also play an important role in the categorization. In summary, it can be said that bio-inspired and biomimetic nanomaterials represent important base materials as so-called functional advanced materials in research, development and industry – provided that the material development is accompanied by a corresponding safety and sustainability-oriented technology assessment.
Titandioxid wird seit den 1960er-Jahren in Europa als Lebensmittelzusatzstoff (E 171) eingesetzt. Lange Zeit ging man davon aus, dassdieses wasserunlösliche Material aufgrund seiner geringen Absorption keine negativen gesundheitlichen Effekte verursacht. In den letzten Jahren zeigten aber Untersuchungen an Tieren Hinweise auf ein dosisabhängiges toxisches Potenzial bei oraler Aufnahme, vor allem Schädigungen der Leber und der Nieren, Entzündungsreaktionen, Veränderungen an der Milz und am Herz. Ebenso wurde eine Akkumulation in Organen festgestellt und einzelne Arbeiten zeigten auch eine Auswirkung auf die Darmflora sowie das Immunsystem. Eine Studie liefert auch Hinweise auf ein mögliches krebsförderndes Potenzial. Die europäische Behörde für Lebensmittelsicherheit (EFSA) bewertet den Stoff als unbedenklich bei oraler Aufnahme. E 171 kann einen Anteil von bis zu 59 % der Partikeln in einer Größenordnung von unter 100 nm aufweisen. Die französische Behörde für Lebensmittelsicherheit (ANSES) sieht auf Basis der bislang vorliegenden Studien große Unsicherheiten hinsichtlich möglicher gesundheitlicher Effekte, insbesondere durch den hohen nanopartikulären Anteil. Die französische Regierung hat deshalb ein Verbot von E 171 ab 1.1.2020 für ein Jahr beschlossen. Verbraucherschutzorganisationen verlangen eine Ausweitung des Verbots auf die gesamte EU. Die Industrie betont, dass E 171 sicher sei und befürchtet negative wirtschaftliche Folgen. Einige Süßwarenhersteller haben dennoch ihre Rezepturen bereits geändert und setzen kein E 171 mehr ein. Die Europäische Kommission ändert die Spezifikationen für E 171, sodass dieses zukünftig nur mehr maximal einen Anteil von 50 % an Nanopartikeln enthalten darf.
Dieses NanoTrust Dossier beschäftigt sich mit bio-inspirierten und biomimetischen Nanomaterialien. Zuallererst erfolgt eine Begriffsklärung, in der zwischen bioinspirierter bzw. biomimetischer Nanotechnologie und Bionanotechnologie unterschieden wird. Anschließend werden die Grundlagen bioinspirierter und biomimetischer Nanomaterialien präsentiert. Es folgt eine systematische Einteilung von Synthesemethoden bioinspirierter und biomimetischer Nanomaterialien. Diese Einteilung ist nach der Methode der Herstellung der Materialien angeordnet, nicht nach Funktionalität. Dies soll eine schlüssigere Korrelation mit Sicherheitsaspekten, die in vielen Fällen erst erstellt werden muss, ermöglichen. Eine Anordnung nach Materialeigenschaften oder auch Materialzusammensetzungen ist in Folge der großen Vielfalt nicht sinnvoll. Außerdem spielen neben der Chemie auch physikalische Parameter wie Größe, Struktur und Oberflächenbeschaffenheit bei der Bewertung eine wesentliche Rolle. Zusammenfassend ist zu sagen, dass bio-inspirierte und biomimetische Nanomaterialien, sofern die Materialentwicklung von einer entsprechenden sicherheits und nachhaltigkeitsorientierten Technikfolgenabschätzung begleitet ist, wichtige Grundstoffe als sogenannte funktionale Advanced Materials in Forschung, Entwicklung und Industrie darstellen.
Numerous research projects within the 8th Framework Programme for Research and Innovation of the European Commission – Horizon 2020 – are dedicated to environment, health and safety aspects of nanotechnologies, in continuation of the preceding 7th Framework Programme1. Many of the Horizon 2020 projects are devoted to the following subjects: risk assessment, regulation, standardization of measurement and analytical methods. Furthermore, some projects are focusing their research on production techniques and quality standards. Further research topics include life cycle analyses, safeby-design approaches and processes regarding sustainable production. Projects surrounding the subject of toxicity of nanomaterials are increasingly focusing on long-term studies and the (further) development of test methods. A number of Horizon 2020 projects are also dedicated to the consolidation and harmonization of data and databases. An increasing number of projects investigate computer models for the analysis of health risks and exposure scenarios, which are made available in the form of online platforms or tools for regulators, developers and researchers. Compared to the 7th Framework Programme, Horizon 2020 includes more projects dedicated to physicochemical characterization and the development of measurement and analysis methods of nanomaterials, as well as an increased number of nanoinformatic projects, which are intended to pool existing data on a European level.
In der Europäischen Union (EU) ist das Chemikalienrecht weitgehend harmonisiert. Jedoch werden Nanomaterialien, obwohl sie bereits seit Jahrzehnten in Gebrauch sind, in der Gesetzgebung häufig nicht speziell geregelt. Informationen darüber, wie, wo, und in welchen Mengen sie auf dem EU-Markt verwendet werden, sind rar. Da sich kein EU-weites Nanoregister in Planung befindet, haben viele Mitgliedstaaten national verbindliche Register eingeführt. Frankreich machte 2013 mit dem ersten nationalen Nanoregister den Anfang. Vier weitere Länder der Europäischen Union und des Europäischen Wirtschaftsraums (EWR) sind dem Beispiel gefolgt. Alle der nationalen Nanoregister legen starken Wert auf die Vermeidung von Risiken für die menschliche Gesundheit und für die Umwelt, unterscheiden sich jedoch in Bezug auf die eingeforderten Informationen oder den Zeitpunkt der Registrierung.
A number of concepts address safety-relevant issues of innovative materials and products. The Safe-by-Design (SbD) concept is one of these, and aims to take account of these safety issues early on and during the entire product development process. The nano-specific concepts of SbD are intended to address prevailing uncertainties about potential risks to the environment and human health at the beginning stages in the development of new nanomaterials and products. The basic assumption of the SbD concept is that risks can be reduced through the choice of materials, products, tools and technologies, making them as safe as possible. Particular attention is paid to the product development stage, when it is still possible to intervene to control the selection of these factors. In line with the precautionary principle, the early integration of safety in the innovation process is generally seen as desirable.
A number of concepts address safety-relevant issues of innovative materials and products. The Safe-by-Design (SbD) concept is one of these, and aims to take account of these safety issues early on and during the entire product development process. The nano-specific concepts of SbD are intended to address prevailing uncertainties about potential risks to the environment and human health at the beginning stages in the development of new nanomaterials and products. The basic assumption of the SbD concept is that risks can be reduced through the choice of materials, products, tools and technologies, making them as safe as possible. Particular attention is paid to the product development stage, when it is still possible to intervene to control the selection of these factors. In line with the precautionary principle, the early integration of safety in the innovation process is generally seen as desirable.
Eine Reihe von Konzepten befasst sich mit sicherheitsrelevanten Fragestellungen bezüglich innovativer Materialien und Produkte. Das Safe-by-Design (SbD)-Konzept ist eines davon und hat zum Ziel, diese Sicherheitsfragen schon zu Beginn und während der gesamten Produktentwicklungsphase zu berücksichtigen. Durch die nanospezifischen SbD-Konzepte sollen die herrschenden Unsicherheiten über die potenziellen Risiken für Umwelt und menschliche Gesundheit schon früh im Innovationsprozess von neuen Nanomaterialien und -produkten adressiert werden. Die Grundannahme des SbD-Konzeptes besagt, dass Risiken durch den Einsatz von möglichst sicheren Materialien, Produkten, Werkzeugen und Techniken reduziert werden können. Augenmerk wird dabei besonders auf die Produktentwicklungsphase gelegt, in welcher bei der Auswahl dieser Faktoren noch steuernd eingegriffen werden kann. Die frühe Integration von Sicherheit in den Innovationsprozess gilt im Sinne des Vorsorgeprinzips generell als erstrebenswert.
-> Certain nanomaterials in food packaging promise longer shelf life and freshness.
-> Such materials, products, and related processes pose potential risks to the environment and health.
-> “Safe by Design” (SbD) addresses safety issues during early stages of development.
-> In future, SbD concepts must offer clear added value for users, and additionally specific research for testing and detection methods must be promoted.
-> Bestimmte Nanomaterialien in Lebensmittelverpackungen versprechen längere Haltbarkeit und Frische.
-> Solche Materialien, Produkte und damit verbundene Prozesse bergen durch mögliche Freisetzung zahlreiche Risiken für Umwelt und Gesundheit.
-> Durch „Safe-by-Design“ (SbD) können Sicherheitsfragen schon während der Entwicklung berücksichtigt werden.
-> Zukünftig müssen SbD-Konzepte einen klaren Mehrwert für AnwenderInnen bieten sowie gezielte Forschung von Test- und Nachweismethoden gefördert werden.
-> Digital tools make it possible for citizens to participate more easily in policy- and decision-making processes.
-> Numerous local, national and European experiences with the use of digital tools can help improve decision-making processes.
-> One of the most important factors for successful e-participation is a close and clear link to a concrete formal political process.
-> The numerous international experiences with e-participation processes are also highly relevant for Austria.
-> Digitale Instrumente erlauben es BürgerInnen, einfacher an Politik- und Entscheidungsprozessen teilzunehmen.
-> Zahlreiche lokale, nationale und europäische Erfahrungen mit dem Einsatz digitaler Instrumente helfen, Entscheidungsprozesse zu verbessern.
-> Einer der wichtigsten Faktoren für eine erfolgreiche e-Partizipation ist eine enge und klare Verbindung zu einem konkreten formalen politischen Prozess.
-> Die zahlreichen internationalen Erfahrungen mit e-Partizipationsprozessen sind auch für Österreich hoch relevant.
-> Certain nanomaterials in food packaging promise longer shelf life and freshness.
-> Such materials, products, and related processes pose potential risks to the environment and health.
-> “Safe by Design” (SbD) addresses safety issues during early stages of development.
-> In future, SbD concepts must offer clear added value for users, and additionally specific research for testing and detection methods must be promoted.
-> Bestimmte Nanomaterialien in Lebensmittelverpackungen versprechen längere Haltbarkeit und Frische.
-> Solche Materialien, Produkte und damit verbundene Prozesse bergen durch mögliche Freisetzung zahlreiche Risiken für Umwelt und Gesundheit.
-> Durch „Safe-by-Design“ (SbD) können Sicherheitsfragen schon während der Entwicklung berücksichtigt werden.
-> Zukünftig müssen SbD-Konzepte einen klaren Mehrwert für AnwenderInnen bieten sowie gezielte Forschung von Test- und Nachweismethoden gefördert werden.
-> Digital tools make it possible for citizens to participate more easily in policy- and decision-making processes.
-> Numerous local, national and European experiences with the use of digital tools can help improve decision-making processes.
-> One of the most important factors for successful e-participation is a close and clear link to a concrete formal political process.
-> The numerous international experiences with e-participation processes are also highly relevant for Austria.
-> Digitale Instrumente erlauben es BürgerInnen, einfacher an Politik- und Entscheidungsprozessen teilzunehmen.
-> Zahlreiche lokale, nationale und europäische Erfahrungen mit dem Einsatz digitaler Instrumente helfen, Entscheidungsprozesse zu verbessern.
-> Einer der wichtigsten Faktoren für eine erfolgreiche e-Partizipation ist eine enge und klare Verbindung zu einem konkreten formalen politischen Prozess.
-> Die zahlreichen internationalen Erfahrungen mit e-Partizipationsprozessen sind auch für Österreich hoch relevant.
Tel.: +43 (0)1 515 81-6579
Fax: (+43-1-) 515 81-6570
Apostelgasse 23, 1030 Wien
gloria.rose(at)oeaw.ac.at