This project on standardization activities regarding the use of nanotechologies points out the importance of work on standarization and conveys that the input of science is important and desirable.

Anna Pavlicek, MSc MSc, has been employed at ITA since July 2017. She is currently also working on nanotechnology projects at the Institute of Waste Management and the Institute of Synthetic Bioarchitectures at the University of Natural Resources and Life Sciences.
She is currently involved in the ongoing ITA projects NanoTrust and Nanostandards.
Anna Pavlicek studied Biology with a focus on Zoology at the University of Vienna (MSc) and Technical Environmental Management and Ecotoxicology at the FH Technikum Wien (MSc). She is currently completing her PhD studies at the University of Natural Resources and Life Sciences Vienna (BOKU). Her research focuses on issues from the "Environmental Health and Safety" area of nanotechnologies as well as "Nano-Risk-Governance".
From 2014 to 2016 Anna Pavlicek worked as a lab technician at the Institute of Science and Technology (IST) in Klosterneuburg. She took part in international research projects on Genetic Modified Organisms (GMOs). Subsequently she decided to attend a six-months FEMtech internship at the Unit for Environmental Resources & Technologies of the Austrian Institute of Technology (AIT). She focused on methods and research on the reduction of CO2 through its use as resource material.
Her second FEMtech internship in 2017 led her to the ITA where she was involved in the projects NanoTrust and SafeNanoKap. Since April 2018, she has been working as a scientific employee at ITA on various projects, looking at safety and regulatory issues and relevant social issues around nanotechnologies.
She is currently working on the NanoTrust project, mainly concerned with the state of knowledge on potential health and environmental risks of nanotechnology, knowledge communication and cultivating a nano governance network. The project is dedicated to assisting policy-makers in issues surrounding the safety of nanotechnology applications, representing a continuous accompanying process capable of addressing new arising issues as the technology matures and the regulatory situation changes over time.
Within the NanoStandard project the aims is to intensify the communication between the standardisation bodies and the Austrian nano expertise in order to obtain clear ideas on which goals Austria and Austrian representatives can pursue in international nano standardisation.
Within the SolarCircle project (BOKU) she is engaged in the discussion of the material flow of a future-oriented solar cell technology. It aims to identify concepts and associated materials in the context of solar cell technology in order to provide a basis for decision-making for future developments.
Past projects include the SafeNanoKap project, which examined the applicability of the safe-by-design concept in context of development of nanomaterials and –products, the NanoADD project (BOKU), dedicated to examining the role of "Advanced Nanocomposites" in the circular economy of plastics and their impact on the recyclability of the products.
Quantum dots (QDs) are increasingly widespread in medicine and environmental research. Because of their specific optical characteristics, QDs can be detected by fluorescence analyses, even in complex media, such as environmental or tissue samples. Their unique properties make them useful for a variety of applications, such as for the use as fluorescent markers for cells, as contrast agents in deep tissue and tumour imaging, in biosensing or photodynamic therapy, and for targeted drug delivery. As a result, QDs could potentially be used as detectable and clearly identifiable “nanotracers” to mark or detect specific targets or to be able to draw general conclusions about the fate of engineered nanoparticles (ENPs) in environmentally relevant media, e.g. in wastewater. QDs mainly consist of metallic semiconductor compounds, such as cadmium selenide (CdSe), cadmium telluride (CdTe), lead sulphide (PbS) or indium phosphide (InP), which can have toxic effects on cells and organisms. Research is therefore being conducted on nontoxic carbonbased QDs, amongst others. QDs are already being used in products, such as TV screens and novel solar cell technologies. However, with an increasing number of applications and thusan increase in production volumes, potential exposure is also intensifying. Consequently, risks to humans and the environment are increasing as accidental release and resulting negative effects cannot be ruled out. To date,however, only limited data exist on possible environmental and health risks.
Titanium dioxide has been used as a food additive (E 171) in Europe since the 1960s. For a long time, it was assumed that this waterinsoluble material would not cause any negative health effects because of its low absorption rate. In recent years, however, animal studies have confirmed a dose-dependent toxic potential in the event of oral ingestion, with particular damage to the liver and kidneys, inflammatory reactions, and changes to the spleen and heart. The material was also found to accumulate in organs, and individual studies showed an effect on the intestinal flora and the immune system. One study also makes reference to a possible carcinogenic potential. The European Food Safety Authority (EFSA) rated the substance as safe when ingested orally. Up to 59% of the particles of E 171 can have a size of less than 100 nm. On the basis of the studies available to date, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) sees great uncertainties with regard to possible health effects, in particular because of the high proportion of nanoparticulates. The French government has therefore decided to ban E 171 for one year starting from 01.01.2020. Consumer protection organisations are calling for the ban to be extended to the entire European Union (EU). The industry stresses that E 171 is safe and fears negative economic consequences. However, some confectionery manufacturers have already changed their recipes and no longer use E 171. The European Commission is changing the specifications for E 171 so that it may only contain a maximum of 50% of nanoparticles in the future.
This dossier explores bio-inspired and biomimetic nanomaterials, differentiating between bio-inspired or biomimetic nanotechnology and bio-nanotechnology. Following a clarification of these terms, the basics of bio-inspired and biomimetic nanomaterials are then presented. Subsequently, a systematic classification of synthetic methods of bio-inspired and biomimetic nanomaterials is demonstrated. This classification is based on the method of manufacturing and not on the functionality of the materials. This enables a more coherent correlation with security aspects, which are yet to be defined in many cases. Due to the great variety, a categorization according to material properties or material compositions is not considered practical. In addition to chemical properties and behavior, physical parameters such as size, structure and surface quality also play an important role in the categorization. In summary, it can be said that bio-inspired and biomimetic nanomaterials represent important base materials as so-called functional advanced materials in research, development and industry – provided that the material development is accompanied by a corresponding safety and sustainability-oriented technology assessment.
Titandioxid wird seit den 1960er-Jahren in Europa als Lebensmittelzusatzstoff (E 171) eingesetzt. Lange Zeit ging man davon aus, dassdieses wasserunlösliche Material aufgrund seiner geringen Absorption keine negativen gesundheitlichen Effekte verursacht. In den letzten Jahren zeigten aber Untersuchungen an Tieren Hinweise auf ein dosisabhängiges toxisches Potenzial bei oraler Aufnahme, vor allem Schädigungen der Leber und der Nieren, Entzündungsreaktionen, Veränderungen an der Milz und am Herz. Ebenso wurde eine Akkumulation in Organen festgestellt und einzelne Arbeiten zeigten auch eine Auswirkung auf die Darmflora sowie das Immunsystem. Eine Studie liefert auch Hinweise auf ein mögliches krebsförderndes Potenzial. Die europäische Behörde für Lebensmittelsicherheit (EFSA) bewertet den Stoff als unbedenklich bei oraler Aufnahme. E 171 kann einen Anteil von bis zu 59 % der Partikeln in einer Größenordnung von unter 100 nm aufweisen. Die französische Behörde für Lebensmittelsicherheit (ANSES) sieht auf Basis der bislang vorliegenden Studien große Unsicherheiten hinsichtlich möglicher gesundheitlicher Effekte, insbesondere durch den hohen nanopartikulären Anteil. Die französische Regierung hat deshalb ein Verbot von E 171 ab 1.1.2020 für ein Jahr beschlossen. Verbraucherschutzorganisationen verlangen eine Ausweitung des Verbots auf die gesamte EU. Die Industrie betont, dass E 171 sicher sei und befürchtet negative wirtschaftliche Folgen. Einige Süßwarenhersteller haben dennoch ihre Rezepturen bereits geändert und setzen kein E 171 mehr ein. Die Europäische Kommission ändert die Spezifikationen für E 171, sodass dieses zukünftig nur mehr maximal einen Anteil von 50 % an Nanopartikeln enthalten darf.
Dieses NanoTrust Dossier beschäftigt sich mit bio-inspirierten und biomimetischen Nanomaterialien. Zuallererst erfolgt eine Begriffsklärung, in der zwischen bioinspirierter bzw. biomimetischer Nanotechnologie und Bionanotechnologie unterschieden wird. Anschließend werden die Grundlagen bioinspirierter und biomimetischer Nanomaterialien präsentiert. Es folgt eine systematische Einteilung von Synthesemethoden bioinspirierter und biomimetischer Nanomaterialien. Diese Einteilung ist nach der Methode der Herstellung der Materialien angeordnet, nicht nach Funktionalität. Dies soll eine schlüssigere Korrelation mit Sicherheitsaspekten, die in vielen Fällen erst erstellt werden muss, ermöglichen. Eine Anordnung nach Materialeigenschaften oder auch Materialzusammensetzungen ist in Folge der großen Vielfalt nicht sinnvoll. Außerdem spielen neben der Chemie auch physikalische Parameter wie Größe, Struktur und Oberflächenbeschaffenheit bei der Bewertung eine wesentliche Rolle. Zusammenfassend ist zu sagen, dass bio-inspirierte und biomimetische Nanomaterialien, sofern die Materialentwicklung von einer entsprechenden sicherheits und nachhaltigkeitsorientierten Technikfolgenabschätzung begleitet ist, wichtige Grundstoffe als sogenannte funktionale Advanced Materials in Forschung, Entwicklung und Industrie darstellen.
In der Europäischen Union (EU) ist das Chemikalienrecht weitgehend harmonisiert. Jedoch werden Nanomaterialien, obwohl sie bereits seit Jahrzehnten in Gebrauch sind, in der Gesetzgebung häufig nicht speziell geregelt. Informationen darüber, wie, wo, und in welchen Mengen sie auf dem EU-Markt verwendet werden, sind rar. Da sich kein EU-weites Nanoregister in Planung befindet, haben viele Mitgliedstaaten national verbindliche Register eingeführt. Frankreich machte 2013 mit dem ersten nationalen Nanoregister den Anfang. Vier weitere Länder der Europäischen Union und des Europäischen Wirtschaftsraums (EWR) sind dem Beispiel gefolgt. Alle der nationalen Nanoregister legen starken Wert auf die Vermeidung von Risiken für die menschliche Gesundheit und für die Umwelt, unterscheiden sich jedoch in Bezug auf die eingeforderten Informationen oder den Zeitpunkt der Registrierung.
Numerous research projects within the 8th Framework Programme for Research and Innovation of the European Commission – Horizon 2020 – are dedicated to environment, health and safety aspects of nanotechnologies, in continuation of the preceding 7th Framework Programme1. Many of the Horizon 2020 projects are devoted to the following subjects: risk assessment, regulation, standardization of measurement and analytical methods. Furthermore, some projects are focusing their research on production techniques and quality standards. Further research topics include life cycle analyses, safeby-design approaches and processes regarding sustainable production. Projects surrounding the subject of toxicity of nanomaterials are increasingly focusing on long-term studies and the (further) development of test methods. A number of Horizon 2020 projects are also dedicated to the consolidation and harmonization of data and databases. An increasing number of projects investigate computer models for the analysis of health risks and exposure scenarios, which are made available in the form of online platforms or tools for regulators, developers and researchers. Compared to the 7th Framework Programme, Horizon 2020 includes more projects dedicated to physicochemical characterization and the development of measurement and analysis methods of nanomaterials, as well as an increased number of nanoinformatic projects, which are intended to pool existing data on a European level.
-> Certain nanomaterials in food packaging promise longer shelf life and freshness.
-> Such materials, products, and related processes pose potential risks to the environment and health.
-> “Safe by Design” (SbD) addresses safety issues during early stages of development.
-> In future, SbD concepts must offer clear added value for users, and additionally specific research for testing and detection methods must be promoted.
-> Bestimmte Nanomaterialien in Lebensmittelverpackungen versprechen längere Haltbarkeit und Frische.
-> Solche Materialien, Produkte und damit verbundene Prozesse bergen durch mögliche Freisetzung zahlreiche Risiken für Umwelt und Gesundheit.
-> Durch „Safe-by-Design“ (SbD) können Sicherheitsfragen schon während der Entwicklung berücksichtigt werden.
-> Zukünftig müssen SbD-Konzepte einen klaren Mehrwert für AnwenderInnen bieten sowie gezielte Forschung von Test- und Nachweismethoden gefördert werden.
Telefon: +43 (0)1 51581 6564
Bäckerstraße 13, 1010 Vienna
anna.pavlicek(at)oeaw.ac.at
vCard