Bio-Engineering in the 21st Century

Lately, a new series of bioengineering sciences have developed. They raise the hope of being able to control, create and produce the organic world. Technology becomes Biology, and Biology Technology.

Making Perfect Life? analyses for crucial fields of 21st century Biotechnology: the engineering of artificial life, technical interventions in the human body, technical interventions in the human brain, and the creation of intelligent machines It illustrates the two emerging mega-trends: The technology becoming biology trend appears in the aim of producing artificial life from scratch. Emulating biology becoming technology, synthetic biology aims to construct living organisms for useful purposes, applying engineering principles more thoroughly than in biotechnology. Predictably, the pertaining debate in society is going to be much broader than today.

Supported by the findings of past projects, ITA contributed a study on the pursuit of standardisation in synthetic biology. As an engineering field, synthetic biology bridges the gap between research and development. However, the long-term goals are practical applications contributing to a future bio-economy. Practicability is greatly enhanced by standardization, making it possible to use ready-made genetic building blocks with known functions that are universally applicable. This aim is based on the reductionist premises that reproducible elements can be designed to be efficient and that organisms are defined by their genome. So far though, few elements have been constructed and proved to function.

Genetic elements can be compared to “electronic” Lego bricks which are integrated into circuits. Practices like separating design, construction and assembly can also be adopted from this analogy. In addition, synthetic biology is expected to become powerful and economically important like Information Technology was, and still is. The anticipation of importance nevertheless feeds a controversy over three issues: firstly, how to handle intellectual property, through open source or patents. Secondly, some think that the potential for misuse and accidents calls for new safety standards. Thirdly, the boundaries between life and inanimate matter may blur, raising ethical questions and possibly eliciting public unease like with ‘green’ biotechnology. New standards must provide answers to all these questions.

We have identified four challenges for policy makers:

  • establishing technical engineering standards, something new to biology
  • setting safety standards that reliably prevent unwanted effects, ensuring development
  • finding ways between open source and patenting in intellectual property management
  • fostering a public debate that could develop societal standards without risking negative opinion formation

Publications

  • Synthetische Biologie und die Standardisierung biologischer Bauteile

    Torgersen, H. (2011). Synthetische Biologie und die Standardisierung biologischer Bauteile. Ita-Newsletter, 2 f.Retrieved from https://epub.oeaw.ac.at/ita/ita-newsletter/NL0911.pdf#2
  • Standardising Synthetic Biology – Contributing to the Bioeconomy?

    Torgersen, H., & Schmidt, M. (2011). Standardising Synthetic Biology – Contributing to the Bioeconomy?.
  • Wie "neu" ist Synthetische Biologie?

    Kastenhofer, K., & Torgersen, H. (2011). Wie "neu" ist Synthetische Biologie?. Ita-Newsletter, 18. Retrieved from https://epub.oeaw.ac.at/ita/ita-newsletter/NL0611.pdf#18
  • "Making Perfect Life?" – Präsentation im Europäischen Parlament

    Torgersen, H. (2010). "Making Perfect Life?" – Präsentation im Europäischen Parlament. Ita-Newsletter, 4 f.Retrieved from https://epub.oeaw.ac.at/ita/ita-newsletter/NL1210.pdf#4
  • Engineering of Living Artefacts: Synthetic Biology (IP/A/STOA/FWC-2008-96/LOT6/SC1)

    Torgersen, H., Schmidt, M., & Kastenhofer, K. (2010). Engineering of Living Artefacts: Synthetic Biology (IP/A/STOA/FWC-2008-96/LOT6/SC1). In Science and Technology Options Assessment (STOA) (Ed.), Making Perfect Life – Bio-Engineering (in) the 21st Century; Interim Study/Monitoring Report; im Auftrag von: Europäisches Parlament (pp. 11-50). Brüssel.

    This is one of four sections of the Project Report on “Making Perfect Life?”, carried out on behalf of STOA. It describes the framing of the field of Synthetic Biology and its scientific-technological context, describes how particular visions guide the field and flags up streams of development. It investigates the underlying engineering perspective as well as the problem of fulfilling promises, and it defines novelty in the sense of ‘disruptiveness’, providing an overview over major projects in Europe. Ontological and ethical aspects and implications such as risk mitigation, benefit distribution and governance are discussed, as well as conceptualisations of living machines and artificial life.

  • 1

Conference Papers/Speeches

  • 01/06/2010 , Wien
    Helge Torgersen,  Karen Kastenhofer: 
    Ethische Problematisierung von Technowissenschaften – Synthetische Biologie und Systembiologie im Vergleich
    TA'10 – Die Ethisierung der Technik und ihre Folgen für die Technikfolgenabschätzung
  • 1

Duration

01/2010 - 12/2011

Contact

  • Helge Torgersen