Research Scientist
Mathematics and Signal Processing in Acoustics

Tel. +43 1 51581-2531
Email: diana.stoeva(at)

Scientific IDs
ORCID:  0000-0003-4218-4218

The private homepage of Diana Stoeva

Academic background

Diana Stoeva studied Mathematics at Sofia University "St. Kliment Ohridski", Sofia (Bulgaria), where she received a Master Degree in Mathematics (first specialty: Mathematics, Specialization: Mathematical Analysis; second speciality: Teacher of Mathematics and Computer Science). She successfully defended her PhD thesis "Frames and Bases in Banach Spaces" in December 2005. Since 2002, Diana Stoeva has been an Assistant Professor and since 2012 - an Associate Professor at the University of Architecture, Civil Engineering and Geodesy, Sofia (Bulgaria). Diana Stoeva joined the research group "Mathematics and Signal Processing in Acoustics" of the Acoustics Research Institute in 2009.

Current Research

The main research interests of Diana Stoeva are in Operator Theory, Frame Theory (in Hilbert, Banach and Frechet spaces), Gabor analysis. Since 2012 Diana Stoeva has taken part in the START-project "Frames and Linear Operators for Acoustical Modeling and Parameter Estimation". Her current research is on Frame Multipliers and duality relations.



  • Stoeva, D. T.; Balazs, P. (2020) A survey on the unconditional convergence and the invertibility of multipliers with implementation. In: Casey, S. D.; Okoudjou, K.; Robinson, M.; Sadler, B. (Hrsg.), Sampling - Theory and Applications. Applied and Numerical Harmonic Analysis; Cham: Birkhäuser, S. 169 - 192.
  • Stoeva, D. T. (online: 2020) On a characterization of Riesz bases via biorthogonal sequences. Journal of Fourier Analysis and Applications, Bd. 26, S. -.
  • Pilipović, S.; Stoeva, D. T. (2019) Frame expansions of test functions, tempered distributions, and ultradistributions. In: Lindahl K., ; Lindström T., ; Rodino L., ; Toft J., ; P., Wahlberg (Hrsg.), Analysis, Probability, Applications, and Computation. Trends in Mathematics: Birkhäuser, Cham, S. 455 - 463.
  • Christensen, O.; Hasannasab, M.; Stoeva, D. T. (2018) Operator representations of sequences and dynamical sampling. Sampling Theory in Signal and Image Processing, Bd. 17, S. 29-42.
  • Balazs, P.; Holighaus, N.; Necciari, T.; Stoeva, D. T. (2017) Frame Theory for Signal Prcoessing in Psychoacoustics. In: Balan, R.; Benedetto, J. J.; Czaja, W.; Dellatorre, M.; Okoudjou, K. A. (Hrsg.), Excursions in Harmonic Analysis Vol. 5. The February Fourier Talks at the Norbert Wiener Center; Basel: Springer, S. 225-268.
  • Stoeva, D. T.; Balazs, P. (2017, online: 2015) Commutative properties of invertible multipliers in relation to representation of their inverses., Proceedings of SampTA (2017) (SAMPTA 2017); Tallinn, S. 288-293.
  • Stoeva, D. T.; Christensen, O. (2016) On Various R-duals and the Duality Principle., Proceedings of SampTA (2015), Bd. 84, S. 577 - 590.
  • Stoeva, D. T.; Balazs, P. (2016) On the dual frame induced by an invertible frame multiplier. Sampling Theory in Signal and Image Processing, Bd. 15, S. 119-130.
  • Stoeva, D. T.; Christensen, O. (2015, online: 2014) On R-duals and the duality principle in Gabor analysis., Bd. 21, S. 383-400.
  • Balazs, P.; Stoeva, D. T. (2015, online: 2014) Representation of the inverse of a frame multiplier. J. Math. Anal. Appl., Bd. 422, S. 981-994.
  • Christensen, O.; Stoeva, D. T. (2015) On R-duals and the duality principle., Sampling Theory and Applications SampTA 2015: IEEE, S. 352-356.
  • Stoeva, D. T.; Balazs, P. (2015) The dual frame induced by an invertible frame multiplier., Sampling Theory and Applications SampTA 2015 (SAMPTA 2015): IEEE, S. 101-104.
  • Stoeva, D. T. (2015) On frames, dual frames, and the duality principle. Novi Sad Journal of Mathematics, Bd. 45, S. 183-200.
  • Stoeva, D. T.; Balazs, P. (2014) Riesz Bases Multipliers. In: Cepedello Boiso, M.; Hedenmalm, H.; Kaashoek, M. A.; Montes-Rodriguez, A.; Treil, S. (Hrsg.), Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation; Heidelberg, New York, Dordrecht: Birkhäuser, S. 475-482.
  • Pilipovic, S.; Stoeva, D. T. (2014) Fréchet frames, general definition and expansions. Analysis and Applications, Bd. 12 (02), S. 195-208.
  • Balazs, P.; Stoeva, D. T. (2013) A review of the invertibility of Frame multipliers., Proceedings of the SampTA 2013; Bremen, Germany, S. 186-188.
  • Stoeva, D. T.; Balazs, P. (2013) Canonical forms of unconditionally convergent multipliers., Bd. 399, S. 252-259.
  • Stoeva, D. T.; Balazs, P. (2013) Detailed characterization of unconditional convergence and invertibility of multipliers. Sampling Theory in Signal and Image Processing (STSIP), Bd. 12 (2-3), S. 87-125.
  • Stoeva, D. T. (2013) From Hilbert frames to General Fréchet frames., "Complex Analysis and Applications '13" (Proc. Intern. Conf., Sofia, 2013); Sofia, Bulgaria: Institute of Mathematics and Informatics, Bulg. Acad. Sci., S. 301-311.
  • Stoeva, D. T.; Balazs, P. (2012) Invertibility of multipliers. Applied and Computational Harmonic Analysis, Bd. 33 (2), S. 292-299.

Additional Information


Diana Stoeva is a member of the following Associations:

  • International Association for Generalized Functions (since 2012)
  • European Woman in Mathematics (since 2016)