Peer Reviewed Journal Publication(s)

  • Ramlau, R.; Dykes, L.; Reichel, L.; Soodhalter, K.; Wagner, R. (2021, online: 2020) Lanczos-based fast blind deconvolution methods. Journal of Computational and Applied Mathematics, Bd. Volume 382, S. 113067.
  • Sherina, E.; Krainz, L.; Hubmer, S.; Drexler, W.; Scherzer, O. (2020) Displacement field estimation from OCT images utilizing speckle information with applications in quantitative elastography. Inverse Problems, Bd. 36 (12), S. 124003.
  • Hinterer, F.; Hubmer, S.; Ramlau, R. (2020) A note on the minimization of a Tikhonov functional with l 1-penalty. Inverse Problems, Bd. 36 (7), S. 074001.
  • Shatokhina, J.; Hutterer, V.; Ramlau, R. (2020) Review on methods for wavefront reconstruction from pyramid wavefront sensor data. Journal of Astronomical Telescopes, Instruments and Systems, Bd. 6 (1), S. 010901.
  • Pöttinger, Markus; Ramlau, Ronny; Auzinger, Günter (2019) A new Temporal Control Approach for SCAO Systems. Inverse Problems (36(1)), S. 31.
  • Hutterer, Victoria; Ramlau, Ronny; Shatokhina, Iuliia (2019) Real-time adaptive optics with pyramid wavefront sensors:part II. Accurate wavefront reconstruction using iterative methods. Inverse Problems (35 (2019)), S. 045008 (27pp).
  • Ramlau, Ronny; Reichel, Lothar (2019) Error estimates for Arnoldi-Tikhonov regularization for ill-posed operator equations. Inverse Probl., Bd. 35 (5), S. ARTN 055002.
  • Hutterer, Victoria; Ramlau, Ronny; Shatokhina, Iuliia (2019) Real-time adaptive optics with pyramid wavefront sensors: part I. A theoretical analysis of the pyramid sensor model. Inverse Probl., Bd. 35 (4), S. ARTN 045007.
  • Hubmer, Simon; Ramlau, Ronny (2018) Nesterov's accelerated gradient method for nonlinear ill-posed problems with a locally convex residual functional. Inverse Probl., Bd. 34 (9), S. ARTN 095003.
  • Wagner, Roland; Ramlau, Ronny; Hofer, Christoph (2018) Point spread function reconstruction for single-conjugate adaptive optics on extremely large telescopes. Journal of Astronomical Telescopes, Instruments, and Systems, Bd. 4 (4), S. 049003.
  • S. Hubmer, A. Neubauer, R. Ramlau, H. U. Voss (2018) On the Parameter Estimation Problem of Magnetic Resonance Advection Imaging. Journal of Inverse Problems and Imaging, Bd. 12 (1), S. 175-204.
  • Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas; Scherzer, Otmar (2018) Lamé Parameter Estimation from Static Displacement Field Measurements in the Framework of Nonlinear Inverse Problems. SIAM J. Imaging Sci., Bd. 11 (2), S. 1268-1293.
  • V. Hutterer, R. Ramlau (2018) Wavefront reconstruction from nonmodulated pyramid wavefront sensor data using a singular value type expansion. Inverse Problems (34), S. 035002 (19 pp).
  • Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny (2017) Simulation results for a finite element-based cumulative reconstructor. Journal of Astronomical Telescopes Instruments and Systems, Bd. 3 (4), S. 049001.
  • Lorenz, Norbert; Offner, Günter; Knaus, Oliver (2017) Thermal analysis of hydrodynamic lubricated journal bearings in internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Bd. 231 (3), S. 406-419.
  • R. Ramlau, I. Shatokhina (2017) Convolution and Fourier transform based reconstructors for pyramid wavefront sensor. Applied Optics, Bd. 56 (22), S. 6381-6390.
  • R. Ramlau, I. Shatokhina (2017) Convolution and Fourier transform based reconstructors for pyramid wavefront sensor. Applied Optics, Bd. 56 (22), S. 6381-6390.
  • A.-K. Baum, M. Kolmbauer (2017) Topological solvability and DAE-index conditionsfor mass flow controlled pumps in liquid flow networks. Electr. Trans. Num. Anal. (ETNA), Bd. 46, S. 394-423.
  • D. Gerth, A. Hofinger, R. Ramlau (2017) On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Journal of Inverse Problems and Imaging (11), S. 663-687.
  • J. Niebsch, R. Ramlau, K. M. Soodhalter (2017) Solution of coupled differential equations arising from imbalance problems. Electronic Transactions on Numerical Analysis, Bd. 46, S. 89-106.
  • Neubauer, Andreas; Ramlau, Ronny (2017) A singular value type decomposition for the atmospheric tomography operator. SIAM Journal on Applied Mathematics, Bd. 77, S. 838-853.
  • Klann, Esther; Ramlau, Ronny; Sun, Peng (2017) A Mumford-Shah-type approach to simultaneous reconstruction and segmentation for emission tomography problems with Poisson statistics. Journal of Inverse and Ill-Posed Problems, Bd. -, S. 1-22.
  • Ramlau, Ronny; Saxenhuber, Daniela (2016) A gradient-based method of atmospheric tomography. Inverse Problems and Imaging, Bd. 10 (3), S. 781-805.
  • Motta, M.; Galli, D. E.; Liebrecht, M.; Del Maestro, A.; Cole, M. W. (2016) Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes. J. Low Temp. Phys., Bd. 185 (1-2), S. 161-173.
  • Wagner, Roland; Helin, Tapio; Obereder, Andreas; Ramlau, Ronny (2016) Efficient Reconstruction Method for Ground Layer Adaptive Optics with mixed Natural and Laser Guide Stars. Applied Optics, Bd. 55 (6), S. 1421-1429 <'http://dx.doi.org/10.1364/AO.55.001421'>.
  • Raffetseder, Stefan; Ramlau, Ronny; Yudytskiy, Mykhaylo (2016) Optimal mirror deformation for multi conjugate adaptive optics systems. Inverse Problems, Bd. 32 (2), S. 22.
  • (online: 2015) On fractional Tikhonov regularization., Bd. Vol. 23, S. 611--625.
  • Lorenz, Norbert; Offner, Günter; Knaus, Oliver (2015) Fast thermo-elasto-hydrodynamic modelling approach for mixed lubricated journal bearings in internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (SAGE Publications), Bd. 229 (8), S. 962-976.
  • Kylanpaa, I.; Aichinger, M.; Janecek, S.; Rasanen, E. (2015) Finite-size effects and interactions in artificial graphene formed by repulsive scatterers. J. Phys.-Condes. Matter, Bd. 27 (42), S. ARTN 425501.
  • Gerth, Daniel; Hahn, Bernadette N.; Ramlau, Ronny (2015) The method of the approximate inverse for atmospheric tomography. Inverse Probl., Bd. 31 (6), S. ARTN 065002.
  • Emans, Maximilian (2015) Aggregation algorithms for k-cycle AMG in computational fluid dynamics. Prog. Comput. Fluid Dyn., Bd. 15 (6), S. 9-25.
  • Ramlau, Ronny; Bleyer, Ismael (2015) An alternating iterative minimisation algorithm for the double-regularised total least square functional. Inverse Problems, Bd. 31 (7), S. 075002.
  • (online: 2015) An alternating iterative minimisation algorithm for the double-regularised total least square functional., Bd. 31.
  • Klann, Esther; Quinto, Eric Todd; Ramlau, Ronny (2015) Wavelet methods for a weighted sparsity penalty for region of interest tomography. Inverse Probl., Bd. 31 (2), S. ARTN 025001.
  • Haslinger, Josef; Offner, Günter; Sopouch, Martin (2014) Non-smooth dynamics of coil contact in valve springs. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, Bd. 94 (11), S. 957-967.
  • J. Niebsch, R. Ramlau (online: 2014) Simultaneous estimation of mass and aerodynamic rotor imbalances for wind turbines. Journal of Mathematics in Industry, Bd. 4 (1), S. 12.
  • Ramlau, Ronny; Niebsch, Jenny (2014) Simultaneous estimation of mass and aerodynamic rotor imbalances for wind turbines. Journal of mathematics in Industry (2014), S. 4:12.
  • Wang, W.; Anzengruber, S. W.; Ramlau, R.; Han, B. (2014) A global minimization algorithm for Tikhonov functionals with sparsity constraints. Applicable Analysis, Bd. 94 (3), S. 580-611.
  • Aichinger, Michael; Janecek, Stefan; Kylänpää, Ilkka; Räsänen, Esa (2014) Dirac physics in flakes of artificial graphene in magnetic fields. Physical Review B, Bd. 89, S. 235433.
  • A. Neubauer, R. Ramlau (2014) On convergence rates for quasi-solutions of ill-posed problems. ETNA, Bd. 41, S. 81-92.
  • D. Gerth, R. Ramlau (2014) A stochastic convergence analysis for Tikhonov regularization with sparsity constraints. Inverse Problems, Bd. 30 (5), S. 055009.
  • M. Yudytskiy, T. Helin, R. Ramlau (2014) Finite element-wavelet hybrid algorithm for atmospheric tomography. Journal of the Optical Society of America A, Bd. 31 (3), S. 550-560.
  • R. Ramlau, A. Obereder, M. Rosensteiner, D. Saxenhuber (2014) Efficient iterative tip/tilt reconstruction for atmospheric tomography. Inverse Problems in Science and Engineering, Bd. 22 (8), S. 1345-1366.
  • Anzengruber, S. W.; Hofmann, B.; Ramlau, R. (2013) On the interplay of basis smoothness and specific rangeconditions occurring in sparsity regularization. Inverse Problems, Bd. 29 (12), S. 125002.
  • M. Rosensteiner, R. Ramlau (2013) The Kaczmarz algorithm for multiconjugated adaptive optics with laser guide starsJournal of the Optical Society of America. Journal of the Optical Society of America A, Bd. 30(8), S. 1680-1686.
  • M. Eslitzbichler, C. Pechstein, R. Ramlau (2013) An H^1 Kaczmarz reconstructor for atmospheric tomography. Journal of Inverse and Ill-Posed Problems, Bd. 21 (3), S. 431-450.
  • I. Shatokhina, A. Obereder, M. Rosensteiner, R. Ramlau (2013) Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor. Applied Optics, Bd. 52(12), S. 2640-2652.
  • E. Klann, R. Ramlau (2013) Regularization properties of Mumford-Shah type functionals with perimeter and norm constraints for linear ill-posed problems. SIAM Journal of Imaging Sciences, Bd. 6, S. 413-436.
  • T. Helin, M. Yudytskiy (2013) Wavelet methods in multi-conjugate adaptive optics. Inverse Problems, Bd. 29 (8), S. 085003.
  • I. Bleyer, R. Ramlau (2013) A Double Regularization Approach for Inverse Problems with Noisy Data and Inexact Operator. Inverse Problems, Bd. 29, S. 025004.

Book/Monograph

  • Ramlau, R.; Scherzer, O. (2019) 100 years Mathematical Tomography.
  • A. Binder, M. Aichinger (2013) A Workout in Computational Finance.
  • 1

Lectures

Lectures

  • 13.04.2021
    Pöchtrager, Bernhard
    Topological index analysis and its application to multi-physical systems in transient system simulation
    ECMI 2021
  • 08.10.2020 , Nowosibirsk
    Ronny Ramlau
    Inverse Problems in Adaptive Optics: Wavefront Reconstruction and Atmospheric Tomography
    Inverse and Ill-posed problems: Theory and Numerics. XII International scientific Conference and young Scientist School Nowosibirsk
  • 09.03.2020 , San Francisco, California
    Ronny Ramlau Julia Shatokhina Elisabeth Brunner etal.
    In-vivo demonstration of AO-OCT with a 3-sided pyramid wavefront sensor
    SPIE BiOS, 2020
  • 17.02.2020 , Eindhoven
    Pöchtrager, Bernhard
    Multirate DAE-simulation and its application in system simulation software for the development of electric vehicles
    SCEE 2020
  • 1