Assoc. Prof. Dr. Daniel Kiener

Function: Group Leader
Room: 412
Phone: +43 (0) 3842-804-412
E-Mail: daniel.kiener(at)



Micro- and Nanomechanics and Micro- and Nanostructure Characterization

When the material grain size or the sample volume itself are reduced to the micron- and sub-micron regime, significant size effects on the mechanical properties arise due to the increased contribution of surfaces and interfaces. We aim to derive a mechanistic understanding of the interplay between sample or microstructure size, the presence of individual microstructural elements such as interfaces, grain boundaries or dislocations, and the resulting global material properties. This is achieved by a combination of sophisticated methods such as highly localized and miniaturized quantitative experiments performed within high-resolution electron microscopy techniques, temperature- and rate dependent thermo-mechanical microstructure analysis, and advanced nanoindentation techniques. Various interests in the field of Micro- and Nanomechanics concern:

  • Miniaturized testing techniques (compression, tension, bending, fracture, fatigue, ...)
  • Small scale sample preparation techniques
  • Quantitative electron microscopy
  • Size effects influencing material properties
  • Dislocation plasticity in confined volumes
  • Deformation mechanisms in nanoscale or nanostructured materials (slip, twinning, grain boundaries)
  • Irradiation resistant materials by microstructural design
  • Temperature dependent deformation mechanisms of single crystal and nanocrystalline fcc and bcc metals
  • Thermal fatigue behavior and microstructural stability of metallic thin films
  • Local depth-dependent residual stresses in complex layered structures
  • Fracture processes and properties of small structures and multilayers
  • Deformation mechanisms in hexagonal metals
  • Temperature dependent deformation mechanisms in nanoporous materials



Size effects influencing material properties, dislocation plasticity in confined volumes, temperature and irradiation dependent deformation, thermal fatigue and fracture of small-scale structures and multilayers, in-situ micromechanical testing in the SEM, in-situ nanomechanical testing in the TEM, advanced nanoindentation techniques, digital image correlation methods


  • In situ micromechanical experiments in the SEM
  • In situ nanomechanical testing in the TEM
  • Broad ion beam and FIB based material structuring
  • Advanced nanoindentation techniques (e.g. elevated temperatures, rate dependencies)
  • Digital image correlation techniques to measure local deformations and microstructural evolution
  • Local determination of residual stresses with high depth resolution
  • Miniaturized fracture testing in the SEM and TEM
  • Novel laser-based fast thermo-mechanical heating/cycling techniques



In-situ an In-operando Characterization Techniques in Materials Science (In-situ und in-operando Charakterisierungstechniken in der Werkstoffwissenschaft), Materialphysik I and III, Wissenschaftliche Arbeiten in der Materialphysik


  • Introduction to Materials Science
  • Materials Characterization
  • Materials Physics I
  • Materials Physics III
  • Exercises to Materials Physics
  • In-situ and in-operando characterization techniques in material science
  • Exercises to In-situ and in-operando characterization techniques in material science
  • Seminar Bachelor Thesis
  • Seminar Master Thesis
  • Scientific Work in Materials Physics


  • Essential refinements of spherical nanoindentation protocols for the reliable determination of mechanical flow curves
    A. Leitner, V. Maier-Kiener, Kiener D.
    Materials and Design146, 69-80 (2018)
  • Nanoindentation creep behavior of Cu–Zr metallic glass films
    Y. Wang, J. Zhang, K. Wu, G. Liu, D. Kiener, J. Sun
    Materials Research Letters6, 22-28 (2018)
  • Laser Ultrasonic Thin Film Characterization of Si-Cu-Al-Cu Multi-Layered Stacks
    E. Grünwald, R. Nuster, G. Paltauf, T. Maier, R. Wimmer-Teubenbacher, R. Konetschnik, D. Kiener, V. Leitgeb, A. Köck, R. Brunner
    Materials Today: Proceedings4, 7122-7127 (2017)
  • Substrate-Influenced Thermo-Mechanical Fatigue of Copper Metallizations: Limits of Stoney's Equation
    S. Bigl, S. Wurster, M.J. Cordill, D. Kiener
    Materials10, ARTN 1287 (2017)
  • Dominating deformation mechanisms in ultrafine-grained chromium across length scales and temperatures
    R. Fritz, D. Wimler, A. Leitner, V. Maier-Kiener, D. Kiener
    Acta Materialia140, 176-187 (2017)
  • Micro-Mechanical In Situ Measurements in Thin Film Systems Regarding the Determination of Residual Stress, Fracture Properties and Interface Toughness
    R. Konetschnik, D. Kiener, D. Kozic, H.-P. Gänser, R. Brunner
    , 750-751 (2017)
  • Development and application of a heated in-situ SEM micro-testing device
    R. Fritz, D. Kiener
    Measurement110, 356-366 (2017)
  • Film thickness dependent microstructural changes of thick copper metallizations upon thermal fatigue
    S. Bigl, C.O.W. Trost, S. Wurster, M.J. Cordill, D. Kiener
    J. Mater. Res.32, 2022-2034 (2017)
  • Dynamic nanoindentation testing: is there an influence on a material’s hardness?
    A. Leitner, V. Maier-Kiener, D. Kiener
    Materials Research Letters5, 486-493 (2017)
  • The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation
    M.J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, D. Kiener, R. Pippan
    MATERIALS & DESIGN121, 109-118 (2017)