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Agglomeration processes in ageing societies

Theresa Grafeneder-Weissteiner and Klaus Prettner

1 Introduction

With the ongoing worldwide economic integration during the last decades, economists’

and policy makers’ interest in the location of economic activity has dramatically risen

(see e.g. Fujita and Thisse (2002) and the World Bank (2009)’s development report

on economic geography). Within the European Union for example, regional cohesion

policies targeted at a more equal spatial allocation of resources are on top of the political

agenda. At the same time, as illustrated in the special report on ageing populations of The

Economist (2009), demographic change has been creating serious economic challenges for

industrialized countries. In particular, declining fertility has caused upward shifts in the

mean age of most countries’ populations while simultaneously reducing population growth

rates (see Eurostat (2009) and United Nations (2007)).

Up to now, these two issues have been analysed independently of each other, with the

New Economic Geography (NEG) addressing the impact of deeper economic integration on

the spatial concentration of productive factors and overlapping generation (OLG) models

investigating the effects of demography on macroeconomic aggregates. This division is

unfortunate since both demographic change and economic integration crucially influence

demand patterns which themselves are - via the returns to productive factors - decisive for

the spatial distribution of economic activity. Explaining agglomeration processes without

accounting for demographic developments thus misses a fundamental point.

Grafeneder-Weissteiner and Prettner (2009) have made a first step toward closing

this gap by merging these two research strands and for the first time providing a uni-

fied framework within which the linkage between demographic change and agglomeration

can be accurately analysed. In particular, the have shown that introducing an overlapping

generation setting where individuals face lifetime uncertainty considerably reduces agglom-

eration tendencies. By equalizing the birth to the death rate, their framework, however,

can only analyse the effects of changes in the population age structure while ignoring the

impacts of varying population growth due to demographic change. Since declining fertility

leads to decreasing population growth rates while lower mortality rates imply higher pop-

ulation growth, it is essential to reassess the impact of demographic change on the location

of industries in a setting with nonconstant population size. Having this purpose in mind,

the model presented in this paper extends Grafeneder-Weissteiner and Prettner (2009)’s

approach by allowing for nonequal birth and mortality rates and thus growing populations.

1



In particular, we generalize Baldwin (1999)’s constructed capital model by incorporating

Buiter (1988)’s overlapping generation structure to arrive at a NEG framework featuring

both population ageing and varying population size.

In Baldwin (1999)’s constructed capital model concentration of economic activity is ex-

plained via a demand-linked circular causality whose pro-agglomerative effect is strongest

for high levels of economic integration. In particular, with interregionally immobile capi-

tal, a higher capital stock raises capital income and thus expenditures which leads to an

increase in the capital rental rate and therefore to further capital accumulation. Since

higher capital accumulation is typically associated with medium-run growth, this two-

region neoclassical growth framework illustrates how economic integration can lead to

the emergence of “rust” and “boom belts”. Its intertemporally optimized saving features

moreover allow an easy incorporation of overlapping generations with individuals that

face a positive probability of death and differ with respect to their age. By using Buiter

(1988)’s overlapping generation structure, demographic change capturing both changes

in the population age structure and/or in the population growth rate can be analysed

via variations in either the birth or the mortality rates. In particular, we can analyse a

situation of population ageing and declining population growth rates as recently faced by

many industrialized countries. Overall, our modelling strategy does not only allow us to

accurately analyse agglomeration processes in ageing societies but also provides us with

a more convincing description of reality compared to Baldwin (1999)’s setting with one

infinitely lived individual.

Our results show that the possibility of agglomeration crucially hinges on the economies’

demographic properties, i.e. on the birth and mortality rate. While declining birth rates

strengthen agglomeration processes, declining mortality rates weaken them. These dif-

ferential effects on the stability properties of the symmetric equilibrium are due to the

opposite impact of changes in the birth and mortality rate on the population size. Lower

birth rates decrease the population growth rate, while lower mortality rates increase it.

Since population growth weakens the wealth and thus expenditure increase due to a higher

capital stock, it acts as an important dispersion force. For declining birth rates, the popu-

lation growth based channel therefore strengthens the pro-agglomerative effects of a lower

turnover of generations first identified by Grafeneder-Weissteiner and Prettner (2009),

while for declining mortality rates the implied increase in the population growth rate

counteracts and even dominates the impacts via the turnover channel.

The remainder of the paper is structured as follows. Section 2 presents the model

framework and derives the equilibrium laws of motion for capital and expenditures. Section

3 first verifies the existence of a symmetric long-run equilibrium and then investigates its

stability properties. In doing so, we can not only analyse agglomeration processes in ageing

societies but also isolate the population growth based effect on agglomeration. Finally,

section 4 contains concluding remarks and sketches possible lines of further research.
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2 The model

This section describes how we integrate Buiter (1988)’s overlapping generation structure

with growing populations into the constructed capital framework of Baldwin (1999) to

arrive at a NEG framework allowing for both population ageing and varying population

size.

There are two symmetric regions or countries, denoted as H (home) and F (foreign)1,

with identical production technologies, trade costs, preferences of individuals, labour en-

dowments and demographic structures. Each region has three economic sectors (agricul-

ture, manufacturing and investment) with two immobile factors (labour L and capital K)

at their disposal.

The homogeneous agricultural good, which is also the numeraire good and denoted

as z, is produced under constant returns to scale in a perfectly competitive market using

labour as the only input with, by choice of units, an input coefficient of one. It can be

freely traded between the two regions.

Manufacturing firms behave as in the monopolistic competition framework of Dixit

and Stiglitz (1977) and therefore produce horizontally differentiated varieties, m, with one

unit of capital as fixed input and a variable per unit requirement of am units of labour. A

continuum of varieties i ∈ (0, VH ] is produced at home, whereas a continuum of varieties

j ∈ (0, VF ] is manufactured in the foreign region. In contrast to the agricultural good,

trade of manufactures involves iceberg transport costs such that ϕ ≥ 1 units of a certain

good have to be shipped in order to sell one unit abroad (see e.g. Baldwin et al. (2003)).

Firms thus face an increasing returns to scale production technology with an associated

cost function π+wamYm(i), where π is the capital rental rate representing the fixed cost,

w is the wage per efficiency unit of labour and Ym(i) is total output of one manufacturing

good producer.

In the Walrasian investment sector, capital, i.e. machines, are produced using labour

as the only input with an input coefficient of ai. Wages of the workers are paid out

of individuals’ savings. Following Baldwin (1999), a share δ > 0 of the capital stock

depreciates at each instant.

Concerning the overlapping generation structure of our model economy, we closely

follow Buiter (1988). We assume that at each point in time, τ ∈ [0,∞), a large cohort

consisting of new individuals is born. Newborns receive no bequests and thus start their

lives without any wealth. Each individual’s time of death is stochastic with an exponential

probability density function parameterized by the constant instantaneous mortality rate

μ > 0. Normalizing initial population size N(0) to one, the size of the cohort born at t0

at a certain point in time τ is N(t0, τ) = βeβt0e−μτ (see appendix A.1)2, where β > 0 is

1If further distinction is needed, foreign variables are moreover indicated by an asterisk. In particular,
the superscript F denotes that a good was produced in the foreign region, whereas the asterisk indicates
that it is consumed in the foreign region. In what follows, emphasis will be on the home region. The
corresponding expressions for the foreign region can be derived by symmetry.

2In what follows the first time index of a variable will refer to the birth date, whereas the second will
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the constant birth rate. Consequently, total population size at time τ is given by

N(τ) =

∫ τ

−∞
N(t0, τ)dt0

=

∫ τ

−∞
βeβt0e−μτdt0

= e(β−μ)τ , (1)

where we denote its growth rate as n ≡ β − μ.

Since there is no heterogeneity between members of the same cohort, each cohort can

be described by one representative individual, who inelastically supplies her efficiency

units of labour l on the labour market with perfect mobility across sectors but immobility

between regions. Finally, as in Yaari (1965), individuals can insure themselves against the

risk of dying with positive assets by buying actuarial notes of a fair life insurance company

which are cancelled upon their death.

2.1 Individual consumption behaviour

Preferences over the agricultural good and a CES composite of the manufacturing varieties

are Cobb-Douglas. The representative individual of the cohort born at t0 chooses at each

instant τ > t0 consumption of the agricultural good, cz(t0, τ), consumption of varieties

produced at home, cHm(i, t0, τ), and consumption of varieties produced abroad, cFm(j, t0, τ),

to maximize her expected lifetime utility at time t0
3

U(t0, t0) =

∫ ∞

t0

e−(ρ+μ)(τ−t0) ln
[
(cz(t0, τ))

1−ξ(caggm (t0, τ))
ξ
]
dτ, (2)

where ρ > 0 is the rate of pure time preference, 0 < ξ < 1 is the manufacturing share of

consumption and

caggm (t0, τ) ≡
[∫ VH(τ)

0

(
cHm(i, t0, τ)

)σ−1
σ di+

∫ VF (τ)

0

(
cFm(j, t0, τ)

)σ−1
σ dj

] σ
σ−1

represents consumption of the CES composite with σ > 1 being the elasticity of substitu-

tion between varieties.

The wealth constraint of a representative individual is given by

k̇(t0, τ) =
w(τ)l + π(τ)k(t0, τ)− e(t0, τ)

w(τ)ai
+ μk(t0, τ)− δk(t0, τ), (3)

where k(t0, τ) is the individual capital stock and e(t0, τ) are individual expenditures for

indicate a certain point in time.
3Equation (2) can be easily derived by calculating expected lifetime utility, where the date of death is

a random variable with an exponential probability density function parameterized by a constant instanta-
neous mortality rate μ.
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consumption defined as

e(t0, τ) ≡ pz(τ)cz(t0, τ) +

∫ VH(τ)

0
pHm(i, τ)cHm(i, t0, τ)di+∫ VF (τ)

0
pFm,ϕ(j, τ)c

F
m(j, t0, τ)dj.

Here pz(τ) is the price of the agricultural good, p
H
m(i, τ) the price of a manufactured variety

produced at home and pFm,ϕ(j, τ) the price of a manufactured variety produced abroad

with the subscript ϕ indicating the dependence on transport costs. This wealth constraint

displays the structure of the investment sector by showing that individual savings, defined

as income minus consumption expenditures, are transformed into capital.

The law of motion for capital given in equation (3) is based on Yaari (1965)’s full

insurance result implying that individuals save solely in the form of actuarial notes from

the life insurance company, whose fair rate exceeds the market rate of return on capital,
π(τ)

w(τ)ai
− δ, by μ (see Yaari (1965)).

The individual’s utility optimization problem can be solved by applying a three stage

procedure.4 The first stage analyses the dynamic savings-expenditure decision and results

in the Euler equation for the representative individual of the cohort born at t0

ė(t0, τ)

e(t0, τ)
=

π(τ)

aiw(τ)
− δ − ρ. (4)

Stage two and three finally deal with the static optimal consumption allocation between

the CES composite and the agricultural good as well as with the allocation of consumption

to each of the varieties. Altogether this leads to the following demand functions for the

agricultural good and for each of the manufactured varieties

cz(t0, τ) =
(1− ξ)e(t0, τ)

pz(τ)
, (5)

cHm(i, t0, τ) =
ξe(t0, τ)(p

H
m(i, τ))−σ[∫ VH(τ)

0 (pHm(i, τ))1−σdi+
∫ VF (τ)
0 (pFm,ϕ(j, τ))

1−σdj
] , (6)

cFm(j, t0, τ) =
ξe(t0, τ)(p

F
m,ϕ(j, τ))

−σ[∫ VH(τ)
0 (pHm(i, τ))1−σdi+

∫ VF (τ)
0 (pFm,ϕ(j, τ))

1−σdj
] . (7)

2.2 Aggregation

Due to the overlapping generation structure, our model setup does not feature one sin-

gle representative individual. Corresponding to any individual variable we thus define

population aggregates that follow from aggregating up over all cohorts. For capital and

4For details of the derivations see Grafeneder-Weissteiner and Prettner (2009)
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expenditures, these aggregation rules are formally given by

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0,

= βe−μt

∫ t

−∞
k(t0, t)e

βt0dt0, (8)

E(t) ≡
∫ t

−∞
e(t0, t)N(t0, t)dt0,

= βe−μt

∫ t

−∞
e(t0, t)e

βt0dt0, (9)

where K(t) is the aggregate capital stock and E(t) denotes aggregate consumption expen-

ditures.5

For each population aggregate variable X(t), the corresponding quantity per capita

is defined by x̃(t) = X(t)e−nt (see Buiter (1988)). Using this notational convention, we

derive in appendix A.2 the following laws of motion for per capita expenditures ẽ(t) and

per capita capital k̃(t)

˙̃e(t) =

[
π(t)

w(t)ai
− δ − ρ

]
˜e(t)− β(ρ+ μ)aiw(t)k̃(t), (10)

˙̃
k(t) =

(
π(t)

w(t)ai
− δ − β + μ

)
k̃(t) +

l̃

ai
− ẽ(t)

w(t)ai
, (11)

where analogous equations hold in the foreign region. In contrast to the setting with a

constant population size of Grafeneder-Weissteiner and Prettner (2009), where the mor-

tality rate only enters the aggregate Euler equation, demographic parameters appear in

both laws of motion. In particular, the law of motion of per capita expenditures differs

from the individual Euler equation by −β(ρ + μ)aiw(t)k̃(t). Rewriting equation (10) as

(see also appendix A.2)
˙̃e(t)

ẽ(t)
=

ė(t0, τ)

e(t0, τ)
− β

ẽ(t)− e(t, t)

ẽ(t)
(12)

sheds more light on how to explain the emergence of this additional term. As explained in

detail in Grafeneder-Weissteiner and Prettner (2009) for the case of a constant population

size, the difference between individual and per capita consumption expenditure growth

is due to the distributional effects of the turnover of generations. At each instant in

time a fraction μ of wealthier individuals with high consumption expenditures dies6 and is

replaced by a fraction β of newborns without capital holdings and thus lower consumption

expenditures. This continually ongoing process captured by the difference between average

consumption expenditures ẽ(t) and consumption expenditures of newborns e(t, t) slows

down per capita consumption expenditure growth (aggregate economy average) relative

to individual consumption expenditure growth.

5Note that aggregate efficiency units of labour are accordingly given by L(t) = le(β−μ)t.
6Due to the law of large numbers, the individual probability of dying is equal to the fraction of indi-

viduals who die at each instant.
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Whereas both the birth and the mortality rate strengthen the turnover correction term

and thus decrease per capita expenditure growth7, their effects on the per capita law of

motion of capital are of opposite sign. Obviously, it is in fact the population growth rate

n = β − μ that enters the per capita law of motion for capital. A higher n decreases per

capita accumulation by decreasing the market rate of return on capital. It is not surprising

that this last relationship will become crucial when investigating the effects of population

growth on agglomeration tendencies. To do so, we first have to determine the equilibrium

factor prices resulting out of profit maximization in order to arrive at a dynamic system

for expenditures and capital that fully describes the evolution of our economy.

2.3 Profit maximization

Profit maximization and perfect competition in the agricultural sector imply that the price

of an agricultural good equals its marginal cost. Since labour is perfectly mobile across

sectors, the wage rate in the economy is thus pinned down by the price of the agricultural

good. Free trade equalizes this price and thus wages across regions as long as each region

produces some agricultural output which will be assumed from now on.8 We thus have

w(t) = w∗(t) = 1, (13)

since the agricultural good has been chosen as the numeraire.

Profit maximization in the monopolistically competitive manufacturing sector9 yields

pHm(i, t) =
σ

σ − 1
w(t)am, (14)

pFm,ϕ(i, t) = pHm(i, t)ϕ. (15)

Prices are equal to a constant markup over marginal costs and mill pricing is optimal, i.e.

the only difference between prices in the two regions is due to transport costs (see e.g.

Baldwin et al. (2003)).

Since there is free entry into the manufacturing sector, pure profits will be driven

down to zero. Consequently, the capital rental rate, which represents the fixed costs of

each manufacturing firm, is pinned down by the level of operating profits. Using optimal

prices given in equations (14) and (15) together with equations (6) and (7) and redefining

global quantities and regional share variables10 gives operating profits and thus capital

7Recall that by equalizing the birth to the death rate, Grafeneder-Weissteiner and Prettner (2009) were
not able to differentiate between the impact of varying birth and mortality rates, i.e. only μ appeared in
the turnover correction term.

8See Baldwin (1999) for details on this assumption.
9See again Grafeneder-Weissteiner and Prettner (2009) for details of the derivations.

10Note that the number of varieties in the home region VH(t) is equal to the capital stock at home K(t)
because one variety exactly requires one unit of capital as fixed input (analogously K∗(t) ≡ VF (t)).

7



rental rates as11

π =

(
θE

θK + φ(1− θK)
+

(1− θE)φ

φθK + 1− θK

)(
ξEW

σKW

)
, (16)

π∗ =

(
1− θE

1− θK + φθK
+

θEφ

φ(1− θK) + θK

)(
ξEW

σKW

)
, (17)

where φ ≡ ϕ1−σ measures trade openness between the two regions with φ = 0 indicating

prohibitive trade barriers and φ = 1 free trade. World expenditures are defined as EW ≡
E + E∗ and the world capital stock as KW ≡ K + K∗ with θK and θE referring to the

home shares of these quantities.

At the symmetric equilibrium with θK = 1/2 and θE = 1/2, shifting expenditure to

home (dθE > 0) raises π and lowers π∗ since it increases the home market size. A higher

expenditure share therefore promotes agglomeration of capital at home because capital

accumulates where the rental rate is higher and decumulates in the other region. Produc-

tion shifting to home (dθK > 0), on the other hand, has the opposite effects because it

increases competition in the home market (local competition effect). The relative strength

of both forces determines whether agglomeration processes set in in a framework ignor-

ing demographic change. In particular, Baldwin (1999) shows that the pro-agglomerative

force dominates for sufficiently high levels of trade openness.

Grafeneder-Weissteiner and Prettner (2009) have already shown that an overlapping

generation structure with lifetime uncertainty introduces a crucial third force working via

the turnover correction term. Since a higher capital stock in one region implies that dying

individuals are on average richer, the distributional effects are more severe relative to the

region with the lower capital stock. Consequently, the turnover of generations acts as an

anti-agglomerative force by reducing relative aggregate consumption expenditure growth

of the region with the higher capital stock. The crucial question to be analysed in the

following sections is how the introduction of a nonconstant population size, i.e. μ �= β,

affects this linkage between demographic change and agglomeration. In particular, we

investigate how population ageing as represented by declining fertility rates impacts upon

the spatial distribution of economic activity by simultaneously taking into account the

associated changes in the population growth rate.

3 The impact of demographic change on agglomeration

To assess whether and how demographic change impacts upon agglomeration processes

we analyse the stability properties of the symmetric equilibrium more thoroughly. If it

turns out that this steady state is unstable, then any slight perturbation will lead us away

from an equal distribution of capital and expenditures and thus result in agglomeration

processes.

11We ignore time arguments here. Note, moreover, that ξ = ξ∗ and σ = σ∗ due to symmetry between
regions. For further details of the derivations see again Grafeneder-Weissteiner and Prettner (2009).
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3.1 Long-run equilibrium

Using the rental rates from equations (16) and (17) reformulated as functions of the

variables ẽ, ẽ∗, k̃ and k̃∗ (see appendix B) as well as the equilibrium wages from equation

(13) in the per capita laws of motion of capital and consumption expenditures (10) and

(11) yields the following four dimensional system12

˙̃e =

[(
ẽ

k̃ + φk̃∗
+

ẽ∗φ
φk̃ + k̃∗

)(
ξ

aiσ

)
− δ − ρ

]
ẽ− β(ρ+ μ)aik̃, (18)

˙̃e∗ =

[(
ẽ∗

k̃∗ + φk̃
+

ẽφ

φk̃∗ + k̃

)(
ξ

aiσ

)
− δ − ρ

]
ẽ∗ − β(ρ+ μ)aik̃

∗, (19)

˙̃
k =

[(
ẽ

k̃ + φk̃∗
+

ẽ∗φ
φk̃ + k̃∗

)(
ξ

aiσ

)
− δ − β + μ

]
k̃ +

l̃

ai
− ẽ

ai
, (20)

˙̃
k∗ =

[(
ẽ∗

k̃∗ + φk̃
+

ẽφ

φk̃∗ + k̃

)(
ξ

aiσ

)
− δ − β + μ

]
k̃∗ +

l̃

ai
− ẽ∗

ai
. (21)

These four differential equations in the variables ẽ, ẽ∗, k̃ and k̃∗ fully describe the dynamics

of our NEG model with overlapping generations and a nonconstant population size. Note

that they nest both the Baldwin (1999) set-up with β = μ = 0 as well as the Grafeneder-

Weissteiner and Prettner (2009) framework with β = μ > 0 as special cases. The latter

will turn out to be particularly useful when we try to isolate the effect of population

growth on agglomeration tendencies.

Inserting the symmetric outcome ẽ = ẽ∗ and k̃ = k̃∗ into the above system indeed

reveals that it is a steady state with the equilibrium values given by13

¯̃e =
l̃σ ((δ − μ)

√
σ (A+B) + β ((δ + ρ− 2μ)σ + 2(μ+ ρ)ξ +A

√
σ))

2((δ − μ)σ + βξ)((β + δ + ρ)σ − (μ+ ρ)ξ)
,

(22)

¯̃
k =

l̃ ((ρσ −√
σA)(σ − ξ) + 2σξ(β − μ) + δσ(σ + ξ))

2ai((δ − μ)σ + βξ)((β + δ + ρ)σ − (μ+ ρ)ξ)
, (23)

where A ≡ √
σ(δ + ρ)2 + 4β(μ+ ρ)ξ and B ≡ (δ + ρ)

√
σ.

3.2 Formal stability analysis

To analyse the stability properties of the symmetric equilibrium we first linearise the non-

linear dynamic system given in equations (18), (19), (20) and (21) around the symmetric

equilibrium (22) and (23), and then evaluate the eigenvalues of the corresponding 4 × 4

12We again suppress time arguments here. Note, moreover, that we have l̃ = l̃∗, μ = μ∗, β = β∗ ai = a∗
i ,

δ = δ∗ and ρ = ρ∗ due to symmetry between regions.
13These and most of the following results were derived with Mathematica. The corresponding files

are available from the authors upon request. Note also that we restrict attention to the economically
meaningful solution pair, i.e. where consumption and capital is positive for plausible parameter values.
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Jacobian matrix

Jsym =

(
J1 J2

J3 J4

)
, (24)

where the four symmetric 2 × 2 sub-matrices Ji for i = 1, . . . , 4 are given in appendix C

(for this classical approach of stability analysis see e.g. the appendix on mathematical

methods in Barro and Sala-i-Martin (2004)). Solving the characteristic equation yields

the following four eigenvalues

eig1 =
1

2
(r1 −

√
rad1), (25)

eig2 =
1

2
(r1 +

√
rad1), (26)

eig3 =
1

2(φ+ 1)2
√
σ
(r2 −

√
rad2), (27)

eig4 =
1

2(φ+ 1)2
√
σ
(r2 +

√
rad2), (28)

where

r1 ≡ A√
σ
− β − δ + μ,

rad1 ≡
(

A√
σ
+ β + δ − μ

)2

+
(σ − ξ)

(
(A+B)

2
+ 4β(μ+ ρ)ξ

)
σξ

,

r2 ≡ √
σ
(
μ− β(φ+ 1)2 − δ

(
2φ2 + φ+ 1

)
+ φ(μ(φ+ 2)− ρ(φ− 1))

)
+A(3φ+ 1),

rad2 ≡ (
A(φ− 1) +

(
μ(φ+ 1)2 − β(φ+ 1)2 + δ(φ− 1) + φ(φ+ 3)ρ

)√
σ
)2

+

(φ+ 1)((φ+ 1)σ + (φ− 1)ξ)
(
4β(μ+ ρ)ξ(φ+ 1)2 + (φ− 1)2 (A+B)

2
)

ξ
.

The nature and signs of these eigenvalues fully characterize the system’s local dynamics

around the symmetric equilibrium. First it is easily established that all four eigenvalues are

real since both rad1 and rad2 are nonnegative for all possible parameter values.14 Turning

to the signs of the eigenvalues, the analysis is more involved. Indeed, the above eigenvalues

can be used to assess the effects of demographic change on the stability properties of the

symmetric equilibrium for all three cases of growing population, i.e. β > μ, shrinking

population, i.e. β < μ, and a constant population size, i.e. β = μ. The last scenario

has already been investigated in Grafeneder-Weissteiner and Prettner (2009), who show

that in this case eigenvalue three is decisive for the stability properties of the symmetric

equilibrium. In particular, the system is saddle path stable only for parameter ranges that

yield a negative eigenvalue three.

For the case of positive population growth, i.e. β > μ, eigenvalue three retains its

crucial role, which becomes clear when checking the signs of the remaining other eigen-

14Recall the parameter ranges μ > 0, β > 0, δ > 0, σ > 1, ρ > 0, 0 < ξ < 1 and 0 ≤ φ ≤ 1 which also
imply that A > 0 and B > 0. In particular, note that σ > ξ.
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values. Note first, that the sign of r1 is ambiguous.15 As far as eigenvalue 1 is concerned,

it is for sure nonpositive as long as r1 < 0. For the case of r1 > 0, we can show that

r21 < rad1 implying that eigenvalue 1 never gets positive. The last inequality moreover

yields that eigenvalue 2, on the other hand, is always nonnegative.16 Finally, turning to

the sign of eigenvalue 4, note first that r2 again does not have an unambiguous sign.17 For

r2 ≥ 0, eigenvalue 4 is for sure nonnegative. Using Mathematica, it is, however, possible

to show that r2+
√
rad2 > 0 even for negative r2 implying that eigenvalue 4 is nonnegative

for all possible parameter ranges. Summarizing, we have two positive and one negative

eigenvalue. Both for the case of constant population size and population growth the sym-

metric equilibrium thus becomes unstable for parameter values, and in particular birth

and mortality rates, that yield a positive eigenvalue 3.

For the case of population shrinking, i.e. μ > β, only eigenvalue 2 and 4 have unam-

biguous signs. Note first, that r1 > 0 if μ > β which immediately proves the nonnegativity

of eigenvalue 2. Similarly, it can be shown that r2 > 0 if μ > β18 implying that eigenvalue

4 is always nonnegative as well. Thus, for the case of population shrinking, agglomeration

processes will set in for birth or mortality rates for which at least either eigenvalue 1 or

eigenvalue 3 is positive.

Since the above findings illustrate that demographic change, i.e. variations in β and μ,

can only influence the stability properties of the symmetric equilibrium via eigenvalue 3

for the case of β ≥ μ and eigenvalues 1 and 3 for β < μ, it is immediate to investigate them

more thoroughly. Figures 1 and 2, which plot the contour lines of eigenvalues 1 and 3 for

different birth and mortality rates19, show that both of them switch their sign depending

on the economies’ demographic parameters. For the case of population shrinking, i.e.

β < μ, note moreover that for all combinations of β and μ for which eigenvalue 3 switches

sign, eigenvalue 1 is still negative. These observations immediately result in the following

proposition.

Proposition 1. The possibility of agglomeration crucially hinges on the economies’ de-

mographic properties. In particular, both the birth and the mortality rate are decisive for

the stability properties of the symmetric equilibrium.

Proof. See figures 1 and 2 and above arguing on the eigenvalues’ signs.

15In particular, r1 becomes negative for sufficiently high β.
16For r1 > 0 this follows trivially, r21 < rad1 also shows it for r1 < 0.
17In particular, r2 becomes negative for sufficiently high β.
18This follows from rewriting

r2 = A(3φ+ 1) +
√
σ
(−δ

(
2φ2 + φ+ 1

)
+ φρ(1− φ)

)︸ ︷︷ ︸
term 1

+
√
σ
(−β(φ+ 1)2 + μ+ φμ(φ+ 2)

)︸ ︷︷ ︸
term 2

and noting that term 1 is nonnegative for all parameter ranges (see Grafeneder-Weissteiner and Prettner
(2009) for details) while term 2 is nonnegative as long as μ ≥ β.

19Figures 1 and 2 are plotted for δ = 0.05, ρ = 0.015, ξ = 0.3, σ = 4 and φ = 0.98. Note the we use
different ranges of μ and β to focus on the parameter region where the eigenvalues switch sign.
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Figure 1: Contour plot of eigenvalue 3
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Figure 2: Contour plot of eigenvalue 1
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Proposition 1 extends Grafeneder-Weissteiner and Prettner (2009)’s result that with

β = μ agglomeration processes crucially depend on the mortality rate. In a setting with

nonconstant population size it is both the birth and the mortality rate that determine the

stability properties of the symmetric equilibrium. Consequently, in order to fully under-

stand the linkage between demographic change and agglomeration, we must investigate

how changes in either of them impact upon agglomeration tendencies. The next section

precisely deals with this question.

3.3 Agglomeration processes in ageing societies

In the framework with constant population size of Grafeneder-Weissteiner and Prettner

(2009), changes in μ and thus β only change the population age structure. With β �= μ,

varying either of them, however, also changes the population growth rate. In particular,

declines in the birth rate imply both population ageing and a lower population growth

rate, whereas changes in the mortality rate leave the mean age unchanged20 and only alter

population growth (see chapter 7 in Preston et al. (2001)). In order to assess agglomeration

tendencies in ageing societies we thus focus on the case of declining birth rates. Moreover,

by additionally investigating how the mortality rate impacts upon the stability properties

of the symmetric equilibrium, we gain important insights with respect to the population

growth based channel on agglomeration.

Figure 1 has already indicated the qualitative effect of declining birth and mortality

rates on agglomeration processes. Eigenvalue 3 decreases in the birth rate and increases

in the mortality rate. Figures 3 and 421 confirm this observation by plotting eigenvalue 3

as a function of trade openness for different β and μ. Only for sufficiently low β or high

μ we can find levels of economic integration for which eigenvalue 3 gets positive and the

symmetric equilibrium becomes unstable.22

Declining fertility rates leading to an older population age structure and lower pop-

ulation growth rates at the same time thus destabilize the symmetric equilibrium, i.e.

population ageing strengthens agglomeration processes. This is in line with Grafeneder-

Weissteiner and Prettner (2009) who show that with β = μ, increasing μ (and thus also

β) above zero (which leads to a younger population structure while leaving the population

growth rate unchanged) and thus allowing for a turnover of generations, considerably sta-

bilizes the symmetric equilibrium such that for plausible demographic structures agglom-

eration processes do not set in. This last observation turns out to also hold in the present

20This can be easily shown by noting that the proportion of the population at age t − t0 is given by
N(t0,t)
N(t)

= βe−β(t−t0) which is independent of μ. Intuitively, a lower mortality rate on the one hand decreases
the tendency to die more quickly and thus makes the population older but on the other hand also increases
the population growth rate which exactly offsets the individual ageing effect by making the population
younger.

21Figures 3 and 4 are plotted for δ = 0.05, ρ = 0.015, ξ = 0.3 and σ = 4. For figure 3 we moreover fix
μ = 0.001 and for figure 4 we set β = 0.001.

22This also holds for the case of population shrinking, since, as figures 1 and 2 indicate, the parameter
range within which eigenvalue 1 is positive is a subset of the corresponding one of eigenvalue 3. Thus
eigenvalue 3 is decisive for the stability properties of the symmetric equilibrium even for the case of a
shrinking population.
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Figure 3: Eigenvalue 3 as a function of φ for varying β

Figure 4: Eigenvalue 3 as a function of φ for varying μ
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setting with nonconstant population size: for a plausible mortality rate of μ = 0.0125

resulting in a life expectancy of 80 years23 agglomeration processes never take place as

long as β > 0.00051.24 A fertility rate below such a value would clearly be at odds with

reality.25

While the birth rate mimics the effects of demographic change on agglomeration found

in a setting with constant population size, the mortality rate’s impact is completely op-

posite. In particular, lower mortality rates decrease eigenvalue 3 and thus make the

symmetric equilibrium more stable. Since changes in the mortality and birth rate affect

population growth differently, it is immediate to suspect a population growth based chan-

nel to augment the effects of the turnover of generations, which Grafeneder-Weissteiner

and Prettner (2009) have identified as the only link between demographic change and

agglomeration in a setting with constant population size. Indeed, equation (10) clearly

shows that the turnover correction term increases in both demographic parameters imply-

ing that declining μ and β should both strengthen agglomeration processes. Lower birth

rates, however, decrease the population growth rate, while lower mortality rates increase

it. The above findings thus suggest that population growth rate declines as resulting from

lower β act as an additional agglomeration force, while population growth rate increases

due to lower μ stabilize the symmetric equilibrium. For declining birth rates, the pop-

ulation growth based channel simply reinforces the turnover effect, while it counteracts

and even dominates the turnover channel for the case of declining mortality rates. More-

over, by recalling that contemporaneous increases in the birth and mortality rate increase

stability (see Grafeneder-Weissteiner and Prettner (2009)), we can also conclude that the

birth rate effect dominates the mortality rate effect for the case of constant population

size. The next subsection is devoted to verifying this additional population growth based

channel on agglomeration processes.

3.4 The population growth effect

Since Grafeneder-Weissteiner and Prettner (2009) have shown that with β = μ demo-

graphic change only affects the symmetric equilibrium’s stability properties via the turnover

channel, it is possible to isolate the effects of changes in the population growth rate on

agglomeration tendencies by comparing the instability regions of constant to those of vary-

ing population size. This is achieved in figure 5 which plots the instability region as a

function of the birth rate for the case of zero and the case of positive or negative popula-

tion growth.26 In particular, the borders of the instability region are given by the critical

levels of economic integration φbreak1 and φbreak2 (see Grafeneder-Weissteiner and Prettner

(2009) for details) within which eigenvalue 3 is positive and thus agglomeration processes

23Since the probability of death during each year equals μ, average life expectancy is 1
μ
.

24We again set δ = 0.05, ρ = 0.015, ξ = 0.3, σ = 4 for this calculation.
25A birth rate of β = 0.00051 would imply 0.00051 children per individual.
26Note that we now use slightly different parameter values, i.e. δ = 0.1, ρ = 0.1, ξ = 0.4, σ = 2, to

increase the visibility of the population growth effect. For the varying population size case, we fix μ at
0.003.
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Figure 5: Instability region (φbreak1 and φbreak2) for constant and varying population size

may set in.27

Figure 5 confirms our above mentioned presumptions about the effects of changes in

the population growth rate. We see that for positive population growth, i.e. β > 0.003, the

instability region gets smaller compared to the case of constant population size, whereas

it increases for the case of population shrinking, i.e. β < 0.003. This identifies population

growth as an additional dispersion force fostering a more equal distribution of productive

factors and explaining the differential impact of β and μ on agglomeration processes.

Figure 5 also suggests one qualification to Grafeneder-Weissteiner and Prettner (2009)’s

main finding that agglomeration processes are considerably reduced for positive birth and

mortality rates. Indeed, for sufficiently strong population shrinking, i.e. μ > β > 0, the

instability region is bigger than for the case of μ = β = 0 (as represented by the solid

line for β = 0). Only for the case of a nonnegative population growth rate agglomer-

ation tendencies are thus for sure reduced compared to a setting ignoring demographic

structures.

To gain some economic intuition about the particular channel via which population

growth impacts upon agglomeration processes, it is useful to reconsider the more informal

way of checking the stability properties of the symmetric equilibrium followed by Baldwin

27Recall that even for the case of population shrinking, eigenvalue 3 is decisive for the stability properties
of the symmetric equilibrium since the instability region implicitly defined by eigenvalue 1 is a subset of
the instability region defined by eigenvalue 3.
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(1999). This informal way is based on investigating how an exogenous perturbation of the

home share of capital, θK , influences the home capital rental rate relative to the foreign

capital rental rate. A positive impact implies instability as capital accumulation would be

fostered in the home relative to the foreign region.

Overall, there are four channels via which capital shifting changes the capital rental

rate. The first two are the standard anti-agglomerative local competition effect and the

pro-agglomerative demand-linked circular causality first introduced by Baldwin (1999).

The latter shows that a higher share of capital in one region increases, via higher wealth

levels, expenditures and thus operating profits, i.e. capital rental rates, which speeds up

capital accumulation. The former, on the other hand, captures the negative impact of

agglomeration of capital, i.e. firms, on capital rental rates due to more severe competition

(see section 2.3).

In a setting allowing for demographic change in terms of both population ageing and

varying population size, two additional forces linked to the economies’ demographic pa-

rameters β and μ appear. First, there is the anti-agglomerative turnover effect (see again

section 2.3). An exogenous rise in the home capital share increases wealth and thus expen-

diture levels of individuals being currently alive in the home region relative to foreign-based

individuals. The negative distributional effects on per capita expenditures resulting from

birth and death, i.e. the replacement of dying individuals by newborns whose consump-

tion expenditures are lower since they have zero wealth levels, are thus more pronounced

in the home region. This, in turn, decreases the home expenditure share and therefore

relative profitability and capital rental rates.

Both higher birth and mortality rates strengthen this first force between demography

and agglomeration, which is in sharp contrast to the population growth based channel

that additionally affects the linkage between capital shifting and the capital rental for

β �= μ. As already indicated in section 2.2, the impact of β and μ in the law of motion

of per capita capital is of opposite sign. In particular, equation (11) clearly shows that

the market rate of return on capital π
w(t)ai

− δ − β + μ depends negatively on n ≡ β − μ.

The wealth increase due to higher capital income resulting from capital shifting is thus

less pronounced the larger is n. This decreased impact upon wealth translates into lower

expenditure increases and finally lower increases in the capital rental rate which precisely

explains the anti-agglomerative effect of population growth.

4 Concluding remarks

The model presented in this paper sheds more light on the linkage between demographic

change and agglomeration. In particular, it analyses agglomeration processes in ageing

societies and identifies the channels via which demographic developments influence the spa-

tial distribution of economic activity. We extend the framework of Grafeneder-Weissteiner

and Prettner (2009), that already incorporates an overlapping generation structure and

lifetime uncertainty in the constructed capital model of Baldwin (1999), by additionally al-
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lowing for a nonconstant population size. Changes in either the birth or mortality rate are

thus accompanied by changes in the population growth rate. Since population growth per

se acts as an important dispersion force and fertility and mortality have opposite effects

on this rate, their impacts with respect to the spatial distribution of economic activity

also differ. In particular, declining fertility rates strengthen agglomeration processes while

declining mortality rates weaken them.

Our framework is suited to assess the possibility of agglomeration tendencies for various

demographic developments. Most relevant for industrialized countries is probably the one

of declining fertility rates leading to both population ageing and slower population growth.

We find that in such a situation agglomeration tendencies are strengthened but still weaker

than in a setting that fully ignores demographic structures. In particular, our calibrations

suggest that also these countries are currently far away from a situation where catastrophic

agglomeration is likely to occur.

Despite the fact that allowing for population growth constitutes one further step toward

a more comprehensive understanding of the interrelations between demographic change

and agglomeration, many issues still remain open. The above findings e.g. indicate the

need for analysing the combined effect of varying birth and mortality rates. In particular,

having the opposite effects of birth and mortality rates on agglomeration processes in

mind, it is immediate to ask what happens if an economy faces both declining birth and

mortality rates. Our results suggest that the answer to this question will crucially depend

on the resulting change in the population growth rate and requires a direct comparison of

the quantitative effects of changing birth and mortality rates.

Finally, recognizing the tight link between the spatial distribution of economy activity

and economic growth perspectives, it is worth investigating how demographic structures

impact upon regional growth rates. Since demography has been shown to be of crucial

importance for agglomeration, it is immediate to also investigate its effects on the growth

impacts of such concentration tendencies. This requires a NEG framework that allows for

both demographic change and endogenous long-run growth, a task being on the top of our

research agenda.
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Appendix

A Aggregation over individuals

A.1 Cohort size

Since e−μ(t−t0) is the probability of an individual of a cohort born at t0 to survive to time

t and the cohort size of newborns is given by N(t0, t0) = βN(t0), the size of a cohort born

at t0 at time t can be rewritten as

N(t0, t) = βN(t0)e
−μ(t−t0)

= βN(0)ent0e−μ(t−t0)

= βN(0)e(β−μ)t0e−μ(t−t0)

= βN(0)eβt0e−μt

= βeβt0e−μt, (29)

where we use that population size N(t) grows with n = β−μ and we normalize N(0) = 1.

A.2 Aggregate expenditures and capital

To obtain the laws of motion of per capita expenditures and capital, we must first derive

the aggregate consumption rule and the aggregate law of motion of capital. First, note

that individual utility maximization yields the individual consumption expenditures rule28

e(t0, t) = (ρ+ μ)aiw(t)[k(t0, t) + h(t)], (30)

where

h(t) ≡
∫ ∞

t

l

ai
e−RA(t,τ)dτ (31)

is human wealth of individuals in capital units, i.e. the present value of lifetime wage

income with the annuity factor e−RA(t,τ) ≡ e
− ∫ τ

t

(
π(s)

w(s)ai
+μ−δ

)
ds

used for discounting. Opti-

mal individual consumption expenditures in the planning period t in capital units, e(t0,t)
aiw(t) ,

are proportional to total wealth with the marginal propensity to consume out of total

wealth being constant and equal to the effective rate of time preference ρ + μ. As will

become clear soon, it is also necessary to derive an expression for the law of motion of

individual human wealth being equal to per capita human wealth.29 Applying twice the

28For details of the derivations see Grafeneder-Weissteiner and Prettner (2009)
29With age independency, individual variables of course equal per capita variables, e.g. h̃(t) = h(t) and

l̃ = l.
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Leibniz rule to equation (31) yields

˙̃
h(t) = ḣ(t) = − l

ai
+

∫ ∞

t

l

ai
e−RA(t,τ)(−1)

[
−
(

π(t)

w(t)ai
+ μ− δ

)]
dτ

=

(
π(t)

w(t)ai
+ μ− δ

)
h(t)− l

ai
. (32)

Using equation (30) in equation (9) yields the aggregate consumption expenditure rule

E(t) = β

∫ t

−∞
(ρ+ μ)aiw(t)[k(t0, t) + h(t)]e−μt+βt0dt0

= β(ρ+ μ)aiw(t)e
−μt

∫ t

−∞
[k(t0, t) + h(t)]eβt0dt0

= (ρ+ μ)aiw(t) [K(t) +H(t)] , (33)

where

H(t) = βe−μt

∫ t

−∞
h(t)eβt0dt0 = h(t)e(β−μ)t (34)

represents aggregate human wealth.

The law of motion of aggregate capital can be obtained from equation (8) by again

applying the Leibniz rule as

K̇(t) = β

⎛
⎝k(t, t)e(β−μ)t︸ ︷︷ ︸

0

−0

⎞
⎠+

β

[∫ t

−∞
k̇(t0, t)e

βt0e−μtdt0 +

∫ t

−∞
k(t0, t)e

βt0e−μ(−μ)dt0

]
= −μK(t) +

β

∫ t

−∞

(
w(t)l + π(t)k(t0, t)− e(t0, t)

w(t)ai
+ (μ− δ)k(t0, t)

)
eβt0e−μtdt0

= −μK(t) +
L(t)

ai
− E(t)

w(t)ai
+

π(t)

w(t)ai
K(t) + μK(t)− δK(t)

=

(
π(t)

w(t)ai
− δ

)
K(t) +

L(t)

ai
− E(t)

w(t)ai
, (35)

where we used the individual law of motion of capital given in equation (3) to go from

the first to the second line.30 In contrast to the individual law of motion of capital (3),

the aggregate law of motion for capital does not feature the mortality rate, since μK(t)

just captures the transfer of capital of dying to surviving individuals by the life insurance

companies which does not change the rate of return on aggregate capital.

Based on this aggregate law of motion of capital we are now ready to obtain the law

30Recall also that capital holdings of newborns k(t,t) are zero by assumption (no bequests).
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of motion of per capita capital as

˙̃
k(t) = K̇(t)e−nt +K(t)e−nt(−n)

=

[(
π(t)

w(t)ai
− δ

)
K(t) +

L(t)

ai
− E(t)

w(t)ai
)

]
e−nt +K(t)e−nt(−n)

=
l̃

ai
− ẽ(t)

w(t)ai
+

(
π(t)

w(t)ai
− δ

)
k̃(t)− nk̃(t)

=

(
π(t)

w(t)ai
− δ − β + μ

)
k̃(t) +

l̃

ai
− ẽ(t)

w(t)ai
.

Finally, the per capita Euler equation is obtained from differentiating the per capita

version of the aggregate consumption rule given in equation (33) with respect to time and

substituting in the per capita law of motions of capital and human wealth. This yields

ẽ(t) = (ρ+ μ)aiw(t)
[
k̃(t) + h̃(t)

]
(36)

˙̃e(t) = (ρ+ μ)aiw(t)
[
˙̃
k(t) +

˙̃
h(t)

]
= (ρ+ μ)aiw(t)

[(
π(t)

w(t)ai
− δ − n

)
k̃(t) +

l̃

ai
− ẽ(t)

w(t)ai

]
+

(ρ+ μ)aiw(t)

[(
π(t)

w(t)ai
− δ + μ

)
h̃(t)− l̃

ai

]

= (ρ+ μ)aiw(t)

(
− ẽ(t)

w(t)ai

)
+ (ρ+ μ)aiw(t)

(
π(t)

w(t)ai
− δ

)[
k̃(t) + h̃(t)

]
+

(ρ+ μ)aiw(t)
[
−nk̃(t) + μh̃(t)

]
.

Substituting in ẽ(t) from equation (36), we can rewrite ˙̃e(t) as

˙̃e(t) = (ρ+ μ) (−ẽ(t)) + ˜e(t)

(
π(t)

w(t)ai
− δ

)
+ (ρ+ μ)aiw(t)

[
−nk̃(t) + μh̃(t)

]
=

[(
π(t)

w(t)ai
− δ

)
− (ρ+ μ)

]
ẽ(t) + (ρ+ μ)aiw(t)μh̃(t)− n(ρ+ μ)aiw(t)k̃(t)

=

[(
π(t)

w(t)ai
− δ

)
− (ρ+ μ)

]
ẽ(t) + (ρ+ μ)aiw(t)μ

[
ẽ(t)

(ρ+ μ)aiw(t)
− k̃(t)

]
−n(ρ+ μ)aiw(t)k̃(t)

=

[
π(t)

w(t)ai
− δ − ρ

]
ẽ(t) +

[
−μ(ρ+ μ)aiw(t)(k̃(t))− n(ρ+ μ)aiw(t)k̃(t)

]
=

[
π(t)

w(t)ai
− δ − ρ

]
ẽ(t)− β(ρ+ μ)aiw(t)k̃(t),

where we used that h̃(t) = ẽ(t)
(ρ+μ)aiw(t) − k̃(t).
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Therefore we have a two dimensional dynamic system of the following form

˙̃e(t) =

[
π(t)

w(t)ai
− δ − ρ

]
ẽ(t)− β(ρ+ μ)aiw(t)k̃(t)

˙̃
k(t) =

(
π(t)

w(t)ai
− δ − β + μ

)
k̃(t) +

l̃

ai
− ẽ(t)

w(t)ai

with analogous equations holding in the foreign region.

Note, finally, that by using equation (36) and equation (30) for t0 = t the law of motion

of per capita consumption expenditures can be rewritten as

˙̃e(t)

ẽ(t)
=

[
π(t)

w(t)ai
− δ − ρ

]
− β

ẽ(t)− e(t, t)

ẽ(t)

=
ė(t0, τ)

e(t0, τ)
− β

ẽ(t)− e(t, t)

ẽ(t)
.

B Derivation of rental rates

Rental rates given in equations (16) and (17) can be rewritten as31

π =

(
E

K + φK∗ +
E∗φ

φK +K∗

)(
ξ

σ

)
,

π∗ =

(
E∗

K∗ + φK
+

Eφ

φK∗ +K

)(
ξ

σ

)
.

By multiplying the nominator as well as the denominator by e−nt, we arrive at

π =

(
ẽ

k̃ + φk̃∗
+

ẽ∗φ
φk̃ + k̃∗

)(
ξ

σ

)
, (37)

π∗ =

(
ẽ∗

k̃∗ + φk̃
+

ẽφ

φk̃∗ + k̃

)(
ξ

σ

)
. (38)

C Intermediate results for the stability analysis

The Jacobian matrix Jsym, which is evaluated at the symmetric equilibrium and given in
equation (24), has the following entries Ji for i = 1, . . . , 4

J1 =
1

2(φ+ 1)
√
σ

(
A(φ+ 2)−Bφ φ(A+B)

φ(A+B) A(φ+ 2)−Bφ

)
,

J2 =

⎛
⎝ −ai(φ2+1)(A+B)2

4(φ+1)2ξ
− βai(μ+ ρ) −aiφ(A+B)2

2(φ+1)2ξ

−aiφ(A+B)2

2(φ+1)2ξ
−ai(φ2+1)(A+B)2

4(φ+1)2ξ
− βai(μ+ ρ)

⎞
⎠ ,

J3 =
1

ai(φ+ 1)σ

(
ξ − (φ+ 1)σ φξ

φξ ξ − (φ+ 1)σ

)
,

J4 =

⎛
⎝ Aφ+

√
σ(−β(φ+1)2−δ(φ2+φ+1)+μ(φ+1)2+φρ)

(φ+1)2
√

σ
− φ(A+B)

(φ+1)2
√
σ

− φ(A+B)

(φ+1)2
√
σ

Aφ+
√

σ(−β(φ+1)2−δ(φ2+φ+1)+μ(φ+1)2+φρ)
(φ+1)2

√
σ

⎞
⎠

31Note that we suppress time arguments here.
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with the parameter clusters A ≡ √
σ(δ + ρ)2 + 4β(μ+ ρ)ξ as well as B ≡ (δ + ρ)

√
σ.
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