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1 Introduction

Most recently, population ageing in industrialized countries was identified to be one

of the central topics regarding future economic development (United Nations (2007),

Eurostat (2009), The Economist (2009)). Its consequences are expected to be huge.

To mention only the most well known examples: support ratios will decline such

that fewer and fewer workers have to carry the burden of financing more and more

retirees (see for example Gertler (1999) and Gruescu (2007)); overall productivity

levels will change because individual workers have age specific productivity profiles

(see Skirbekk (2008) for an overview); the savings behaviour of individuals will

change because they expect to live longer (see for example Futagami and Nakajima

(2001)). However, as regards the implications of population ageing on per capita

output growth, there are only transient effects of changing support ratios, changing

saving behaviour of households and changing aggregate productivity profiles. The

reason is that on the one hand, a one time shift from high to low fertility cannot lead

to a permanently changing age decomposition of a certain population and on the

other hand, changes in the savings behaviour of households have only level effects

on per capita output (Ramsey (1928), Solow (1956)).

In this paper we concentrate on the implications of population ageing on per

capita output growth over a long time horizon. Since technological progress has

been identified as main driving force behind economic development (see for example

Romer (1990)), we are particularly interested in the effects of changing age decom-

positions on research and development (R & D). Therefore the natural model class to

examine our research question are endogenous and semi-endogenous growth models,

where the research effort is determined in a general equilibrium framework assuming

utility maximizing households and profit maximizing firms.

Endogenous growth models (see for example Romer (1990), Grossman and Help-

man (1991) and Aghion and Howitt (1992)) state that, aside from other influences,
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the population size of a certain country is crucial for long-run economic performance.

Larger countries are able to grow faster because they have more scientists to employ

and they have a larger market such that profit opportunities of firms engaging in R

& D are larger. This effect is called the scale effect which was questioned by Jones

(1995) because it is not supported by empirical evidence. In setting up a scale-free

model of technological change, Jones (1995) paved the way for semi-endogenous

growth models (see also Kortum (1997) and Segerström (1999)), where long-run

economic performance is affected by population growth rather than population size.

The basic idea of semi-endogenous growth models is that research becomes more

and more complex with an increasing level of technology. Consequently, ever more

resources have to be devoted to it in order to sustain a certain pace of development.

Although the described models examine the effects of changes in demographic

patterns as represented by population size and population growth, they remain

silent when it comes to the consequences of population ageing because they assume

that people live forever. We introduce age dependent heterogeneity of individuals

into these models by generalizing them to account for finite planning horizons and

overlapping generations in the spirit of Blanchard (1985) and Buiter (1988). In

doing so we assume that individuals do not live forever but that they have to face

a certain probability of death at each instant. The standard endogenous and semi-

endogenous growth models are then special cases, where the probability of death is

equal to zero.

The paper proceeds as follows: Section 2 describes a model that nests the Romer

(1990) and the Jones (1995) framework. We derive equilibrium and steady state

growth rates in both cases. Section 3 introduces population ageing and examines its

effects in both types of models. Finally, section 4 draws conclusions and highlights

scope for further research.

2 The basic model

This section characterizes the basic model of R & D which relies on horizontal inno-

vations, i.e. on the development of new product varieties1. It nests the Romer (1990)

framework with strong spillovers in the research sector and a constant population

size as well as the Jones (1995) framework with weaker spillovers in the research

sector and a growing population size as special cases (see also Strulik (2009)). We

assume that time evolves continuously and that individuals have infinite planning

horizons. In section 3, when we examine the effects of population ageing, we will

1Using a model with vertical innovations would not change the results.
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replace the latter assumption and introduce an overlapping generations structure.

There are three sectors: final goods production, intermediate goods production and

R & D. The economy has two productive factors at its disposal: capital and labour.

Labour and intermediates are used to produce final goods, capital and blueprints

are used in intermediate goods production and labour is used to produce blueprints

in the R & D sector. Furthermore, as it is standard in these types of models, we

assume perfect competition in the final goods sector and in the research sector,

whereas there is monopolistic competition in the intermediate goods sector.

The discussion in this section builds on Romer (1990) and Jones (1995) with

some slight modifications. First of all, we do not assume that there is only one sin-

gle representative individual who maximizes its discounted stream of lifetime utility.

Instead, L identical individuals are contemporaneously living at each point in time

t. The reason for this assumption is that the model can then be consistently gen-

eralized to allow for a changing age decomposition of the population. Furthermore,

the differences between the model where people live forever and the model where

they have to face a constant risk of death can be highlighted more explicitly. Sec-

ondly, in contrast to Jones (1995) but without loss of generality, we do not allow for

duplication in the R & D process. The reason is that with this simplification Romer

(1990) and Jones (1995) are special cases of a more general approach.

2.1 Consumption side

Suppressing time subscripts, a certain individual maximizes its discounted stream

of lifetime utility

U =

∫ ∞

t0

e−ρ(τ−t0)

(
c1−σ − 1

1− σ

)
dτ, (1)

where t0 is the date of birth of the individual, i.e. the starting point of economic

activities in the respective country, ρ is the subjective discount rate, c refers to

individual consumption of the final good and σ is a coefficient of relative risk aversion

such that the intertemporal elasticity of substitution is 1/σ. The wealth constraint

of each individual reads

k̇ = (r − δ)k + wl − c, (2)

where k refers to the individual capital stock, r is the rate of return on capital, δ

is the rate of depreciation, w represents the wage rate and l refers to the efficiency

units of labour an individual supplies on the labour market. For simplicity we take

the normalization l ≡ 1. Carrying out utility maximization subject to the wealth
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constraint yields the familiar individual Euler equation

ċ =
(r − ρ− δ)

σ
c. (3)

Since our economy is not featuring one single representative individual but a sta-

tionary population consisting of a large number of individuals, we define uppercase

letters as population aggregates and write the aggregate law of motion for capital

and the “aggregate” Euler equation as

K̇ = (r − δ)K + wL− C, (4)

Ċ =
(r − ρ− δ)

σ
C, (5)

where L refers to the population size being equivalent to the cohort size N for

obvious reasons. Due to the fact that there is no heterogeneity of individuals with

respect to age, aggregate equations do not differ from individual equations in the

sense that growth rates of capital and consumption are similar at the individual

level and economy-wide.

In case of the Jones (1995) model with population growth, we follow Acemoglu

(2009) who augments the discount rate by the population growth rate n, such that

the individual Euler equation becomes

ċ

c
=

(r − ρ− n− δ)

σ
. (6)

Without age specific heterogeneity the aggregate Euler equation is then also repre-

sented by equation (5).

2.2 Production side

The final goods sector produces the consumption good (numeraire) with labour and

intermediates as inputs. To have a sensible economic interpretation, one can refer

to intermediate varieties as different machines. Consequently, the final goods sector

produces with a technology of the form

Y = L1−α
Y

∫ A

0

xα
i di, (7)

where Y represents output of the consumption good, LY refers to labour used in

final goods production, A is the technological frontier, i.e. the number of different

machines available, xi is the amount of a certain specific machine used in final
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goods production and α is the intermediate share. Profit maximization and the

assumption of perfect competition in the final goods sector imply that factors are

paid their marginal products:

wY = (1− α)
Y

LY

, (8)

pi = αL1−α
Y xα−1

i . (9)

Here wY refers to the wage rate paid in the final goods sector and pi to prices paid

for intermediate inputs. Note that all specific machines are used to the same extent

so the index i can be dropped due to symmetry.

The intermediate goods sector is monopolistically competitive in the spirit of

Dixit and Stiglitz (1977) and each firm produces one of the specific machines. In

order to do so, it has to purchase one blueprint from the R & D sector and afterwards

employ capital as variable input in production. The costs of blueprints represent

fixed costs for each firm. Free entry will ensure that operable profits equal fixed

costs such that overall profits are zero2. After an intermediate goods producer has

purchased a blueprint, it can transform one unit of capital into one unit of the

intermediate good. Thus operating profits can be written as

π = p(x)k − rk = αL1−α
y kα − rk. (10)

Profit maximization of firms yields prices of machines

p =
r

α
, (11)

where 1/α is the markup over marginal costs (see also Dixit and Stiglitz (1977)).

The aggregate capital stock is equal to the number of all intermediates produced,

i.e. K = Ax, such that equation (7) becomes

Y = (ALY )1−αKα. (12)

The R & D sector employs scientists to discover new blueprints. Depending on

the productivity of scientists, λ, and the size of technology spillovers, φ, the number

of blueprints evolves according to

Ȧ = λAφLA, (13)

2If positive overall profits were present, new firms would enter the market until these profits
are vanished.

5



where LA denotes the number of scientists employed. Consequently, the technologi-

cal frontier expands faster if scientists are more productive or technological spillovers

are higher. If φ = 1, spillovers are strong enough and developing new blueprints does

not become ever more difficult as the technological frontier expands. If in contrast

φ < 1, the spillovers are insufficiently low and developing new blueprints becomes

more and more difficult with an expanding technological frontier. In the former case

our economy behaves like in the Romer (1990) scenario, whereas in the latter case

our economy behaves like in the Jones (1995) scenario. Furthermore, there is perfect

competition in the research sector such that firms maximize

max
LA

πA = pAλAφLA − wALA, (14)

with πA being the profit of a firm in the R & D sector and pA representing the price

of a blueprint. The first order condition pins down wages in the research sector to

wA = pAλAφ. (15)

2.3 Market clearing

There is perfect labour mobility between sectors, therefore wages of final goods

producers and wages of scientists equalize. The reason is that workers in the final

goods sector and scientists do not differ with respect to education or with respect

to productivity. Consequently, if wages were higher in one of these two sectors, it

would attract workers from the other sector until wages equalize again. Therefore

we can insert (8) into (15) to get to following equilibrium condition:

pAλAφ = (1− α)
Y

LY

. (16)

Firms in the R & D sector can charge prices of blueprints that are equal to the

present value of operating profits in the intermediate goods sector because there is

always a potential entrant who is willing to pay this price. Therefore we have

pA =

∫ ∞

t0

e−(R(τ)−R(t0))π dτ, (17)

where R(t0) =
∫ t0

0
(r(s)−δ) ds, i.e. the discount rate is the market interest rate paid

for household’s savings. Via the Leibniz rule and the fact that prices of blueprints
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do not change in the steady state, we can obtain

pA =
π

r − δ
(18)

such that these prices are equal to operating profits of intermediate goods producers

divided by the market interest rate3. Next, we obtain profits by using equation (10)

as

π = (1− α)α
Y

A
(19)

such that equation (18) becomes

pA =
(1− α)αY

(r − δ)A
. (20)

Assuming that labour markets clear, i.e. L = LA + LY , we can determine the

fraction of workers employed in the final goods sector and in the R & D sector by

using equation (16):

LY =
(r − δ)A1−φ

αλ
,

LA = L− (r − δ)A1−φ

αλ
. (21)

The interpretation of these two equations is straightforward: the higher the market

interest rate on capital, r − δ, the higher are the opportunity costs of R & D and

consequently, the lower is the number of scientists and the higher is the number

final goods assemblers employed; the higher the productivity of researchers, λ, the

more scientists and the less assemblers of final goods are employed; if knowledge

spillovers φ are insufficiently low to prevent R & D to become ever more complex,

an expanding technological frontier A reduces employment of scientists and increases

employment of workers in the final goods sector; finally, an increase in the interme-

diate share of final output, α, increases the number of scientists and decreases the

number of workers in the final goods sector because it raises operating profits in the

intermediate sector and therefore prices of blueprints. Inserting (21) into (13) leads

to the evolution of knowledge:

Ȧ = λAφL− (r − δ)A

α
, (22)

3Note that we cannot analyse transition dynamics to an optimal capital stock in this case.
Instead, we immediately jump to the optimal capital stock.
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where we see that the technological frontier expends faster, the larger the population

size is. All factors identified above to reduce the number of scientists employed in

the R & D sector also reduce the pace of technological progress. From now on we

have to distinguish between the Romer (1990) case, where technological spillovers

are strong and the population size is constant, and the Jones (1995) case, where

technological spillovers are weaker and the population grows at rate n.

2.4 The Romer (1990) case

After implementing the central assumption φ = 1 of the Romer (1990) model, the

growth rate of the economy can be written as

g =
Ȧ

A
= λL− r − δ

α
(23)

From equation (5) and via the fact that Ċ/C = g, we arrive at the following expres-

sion for the interest rate

r = gσ + ρ + δ (24)

which can be inserted into equation (23) to obtain the equilibrium growth rate

g =
λLα− ρ

α + σ
. (25)

This equilibrium growth rate is equivalent to the steady state growth rate ḡ because

the right hand side of equation (25) is constant due to the fact that L̇/L = 0. There

are two remarkable consequences of this expression for the steady state growth

rate: first of all, a scale effect appears in the sense that a larger population size

leads to faster economic growth; secondly, increases in the parameters that reduce

employment of scientists lead to decreases in the long-run economic growth rate (see

also Romer (1990)).

2.5 The Jones (1995) case

After implementing the central assumption φ < 1 of the Jones (1995) model, the

growth rate of the economy can be written as

g =
Ȧ

A
=

λL

A1−φ
− (r − δ)

α
(26)
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and we can again insert equation (24) to solve for the equilibrium growth rate

g =
λLα− ρA1−φ

A1−φ(α + σ)
. (27)

Due to L̇/L > 0 and the fact that A shows up on the right hand side of this equation,

it is not yet constant, i.e. the equilibrium growth rate is not equivalent to the steady

state growth rate of the economy. In Appendix A we derive the steady state growth

rate as

ḡ =
n

1− φ
(28)

which increases in the strength of technology spillovers, φ, does not depend on

the population size, L, but increases in the rate of population growth, n. If the

population size is constant, long-run per capita output growth eventually ceases to

exist (see Jones (1995)).

3 Introducing population ageing

In this section we introduce population ageing in the spirit of Blanchard (1985) to

the Romer (1990) case, since there the population size has to stay constant, and

in the spirit of Buiter (1988) to the Jones (1995) case, since there the population

size has to grow. First of all we assume that the total population of an economy

consists of different cohorts that are distinguishable by their date of birth denoted

as t0. Each cohort consist of a measure N(t0, t) of individuals at a certain point in

time t > t0. In addition, we assume that individuals have to face a constant risk

of death at each instant which we denote as µ. Due to the law of large numbers

this rate is equal to the fraction of individuals dying at each instant. In the Romer

(1990) case the population does not grow and therefore the birth rate is also equal

to µ, whereas in the Jones (1995) case the population grows at rate n = β − µ,

where β > µ is the birth rate.

3.1 Consumption sector

The discounted stream of an individual’s lifetime utility can be written as

U =

∫ ∞

t0

e−(ρ+µ)(τ−t0)

(
c1−σ − 1

1− σ

)
dτ, (29)

where t0 refers to the date of birth of a certain cohort and the mortality rate µ

augments the pure discount rate of individuals. The reason is that people face the
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risk of death and therefore do not like to postpone consumption to the same extent

as in case of no lifetime uncertainty. We implement the assumption of Yaari (1965)

that individuals insure themselves against the risk of dying with positive assets by

using their whole savings to buy actuarial notes of a fair life-insurance company.

This company redistributes wealth of individuals who died to those who survived

within a certain cohort and therefore the real rate of return is augmented by the

mortality rate. Consequently, the modified wealth constraint of individuals reads

k̇ = (r + µ− δ)k + wl − c. (30)

Again we take the normalization l ≡ 1. In this case the individual Euler equations

are shown in Appendix A to equal

ċ =
(r − ρ− δ)

σ
c (31)

in case of a stationary population and

ċ =
(r − ρ− n− δ)

σ
c (32)

in case of a growing population. They are similar to the Euler equations without

lifetime uncertainty. However, our economy does not feature one single representa-

tive individual in this setting and we have to use certain aggregation rules to come

up with aggregate Euler equations and aggregate laws of motion for capital.

3.2 Aggregation in case of a constant population

In the modified case, agents are heterogeneous with respect to age and therefore

also with respect to accumulated wealth because older agents have had more time

to build up positive assets. In order to get to the law of motion for aggregate capital

and to the economy-wide Euler equation, we have to apply the following rules to

aggregate over all cohorts alive at time t (see also Heijdra and van der Ploeg (2002)):

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (33)

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0. (34)
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By applying our demographic assumptions we can rewrite this as

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0 (35)

K(t) ≡ µN

∫ t

−∞
k(t0, t)e

µ(t0−t)dt0 (36)

because in case of a stationary population, each cohort is of size µNeµ(t0−t) at a

certain point in time t > t0
4. After carrying out the calculations described in

Appendix A, we arrive at the following expressions for the law of motion of aggregate

capital and for the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) + W (t), (37)

Ċ(t)

C(t)
=

(r − ρ− δ)

σ
− µΩ, (38)

where we denote C(t)−C(t,t)
C(t)

as Ω. Due to the fact that aggregate consumption,

C(t), is always higher than consumption of the newborns, C(t, t), it holds that Ω ∈
[0, 1]. Therefore aggregate consumption growth will always be lower than individual

consumption growth. The reason is that at each instant, a fraction µ of older and

therefore wealthier individuals die and they are replaced by poorer newborns. Since

the latter can afford less consumption than the former, the turnover of generations

slows down aggregate consumption growth (see also Heijdra and van der Ploeg

(2002)).

3.3 Aggregation in case of a growing population

In case of the Jones (1995) model, population growth is allowed for. The aggregation

rules in such a setting remain the same as in the previous subsection but the demo-

graphic assumptions change because the rate of birth β has to exceed the mortality

rate µ. Therefore the population grows at rate n = β − µ and we normalize the

initial population size to L(0) such that we can write the size of a cohort born at

t0 < t at a certain point in time as (see Appendix A):

N(t0, t) = βL(0)eβt0e−µt. (39)

4Consequently, we have that
∫ t

−∞ µNeµ(t0−t)dt0 = L holds for the total population size at time
t.
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Integrating over all cohorts alive yields the population size as

L(t) = βL(0)e−µt

∫ t

−∞
eβt0dt0. (40)

Therefore we can define the aggregate capital stock and aggregate consumption

according to

C(t) ≡ βL(0)e−µt

∫ t

−∞
c(t0, t)e

βt0dt0 (41)

K(t) ≡ βL(0)e−µt

∫ t

−∞
k(t0, t)e

βt0dt0. (42)

After carrying out the calculations described in Appendix A, we arrive at the ag-

gregate law of motion for capital and the aggregate Euler equation

K̇ = (r + µ− β − δ)K(t)− C(t) + W (t), (43)

Ċ(t)

C(t)
=

(r − ρ− β + µ− δ)

σ
− βΩ, (44)

where we again denote C(t)−C(t,t)
C(t)

as Ω. Note that the aggregate Euler equation is

the same as in case of a constant population size, such that again economy-wide

consumption growth falls short of individual consumption growth. Furthermore, we

can state the following Lemma that holds in the Romer (1990) case as well as in the

Jones (1995) case:

Lemma 1. The term Ω is constant over time.

Proof. Due to the fact that Ω can be expressed as (see Appendix A):

Ω = (ρ + µ)
F (t)

C(t)
(45)

we see that it is constant as long as aggregate financial wealth, F (t), and aggregate

consumption, C(t), grow at the same rate. Since there are no transitional dynamics

because ṗA = 0, the aggregate capital stock immediately jumps to its optimal steady

state value. Consequently, the economy never finds itself on a transition path, where

capital accumulates faster than consumption grows.

3.4 The steady state growth rate in the Romer (1990) case

To calculate steady state growth rate in the Romer (1990) case, we use the aggregate

Euler equation for a constant population size to get the following expression for the
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interest rate

r = (g + µΩ)σ + ρ + δ (46)

which we insert into equation (23) such that the equilibrium growth rate becomes

g ≡ =
λLα− ρ− µΩσ

α + σ
. (47)

The equilibrium growth rate is again equivalent to the steady state growth rate ḡ

because the right hand side of equation (47) is constant. At this stage, we can state

the first central result:

Proposition 1. In case of endogenous growth in the spirit of Romer (1990), in-

creasing longevity has a positive effect on the steady state growth rate of an economy.

Proof. The derivative of equation (47) with respect to mortality is equal to

∂ḡ

∂µ
= − Ωσ

α + σ

which is unambiguously negative because Ω and σ are positive and α ∈ [0, 1]. As

an increase in longevity is represented by a decrease in mortality µ, the proposition

holds.

The intuition for this finding is that the planning horizon of individuals expands

with longevity. Consequently, investments into new technologies have longer time

horizons to pay off. This leads individuals to allocate more of their income to

investments into technologies and less of their income to current consumption. Due

to the growth effect of this shift, they are even overcompensated for the initial

sacrifice by increases in lifetime consumption.

3.5 The steady state growth rate in the Jones (1995) case

In Appendix A we show that the equilibrium growth rate of the economy in the

Jones (1995) case is equal to

g =
λLα− (ρ + β − µ + βΩσ)A1−φ

A1−φ(α + σ)
. (48)

Note again that this is not yet the steady state growth rate because the right hand

side of the equation is not constant. Therefore we can state the second central result:
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Proposition 2. In case of semi-endogenous growth in the spirit of Jones (1995),

increasing longevity has a positive effect on the equilibrium growth rate of an economy

during the transition period.

Proof. Plugging equation (40) into equation (48) and taking the derivative with

respect to mortality yields

∂g

∂µ
= −

αβλµL(0)e−µt
∫ t

−∞ eβt0dt0 + A1−φ

A1−φ(α + σ)

which is unambiguously negative because µ, λ, β, σ, α, L(0), Ω and A are posi-

tive. As an increase in longevity is represented by a decrease in mortality µ, the

proposition holds.

There are two reasons for this finding: First, the same force as compared to

the Romer (1990) case works in the sense that the planning horizon of individuals

expands and therefore investments into new technologies increase. There is, however,

an additional effect because population growth accelerates if mortality decreases and

fertility stays constant. Consequently, the flow of scientists into the R & D sector

accelerates as well and a higher growth rate in the number of blueprints can be

sustained.

However, the right hand side of equation (48) is not constant, so it does not

yet represent the steady state growth rate in the Jones (1995) case. We search

for an expression where the growth rate is constant and carry out the associated

calculations in Appendix A. This leads us to the expression

ḡ =
β − µ

1− φ
(49)

for the steady state growth rate of the economy and therefore we state the third

central result:

Proposition 3. In case of semi-endogenous growth in the spirit of Jones (1995),

increasing longevity raises the steady state growth rate of an economy.

Proof. The derivative of equation (49) with respect to mortality is equal to

∂ḡ

∂µ
= − 1

1− φ

which is unambiguously negative because φ < 1 is the central assumption in the

Jones (1995) case. As an increase in longevity is represented by a decrease in mor-

tality µ, the proposition holds.
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The interpretation for this finding is that an increase in the population growth

rate represents a permanent increase in the flow of resources devoted to R & D

and therefore a higher growth rate of the number of patents can be sustained. In

contrast, an expansion of the planning horizon of individuals and the associated

increase in investments into new technologies represents a level effect only. The

resources devoted to R & D increase once and for all which is sufficient to speed

up the growth rate of the number of patents in the medium-run but insufficient to

sustain this increase over longer time horizons.

4 Conclusions

We set up a model for endogenous technological change that nests the Romer (1990)

and the Jones (1995) frameworks. Afterwards we generalize this model class by

introducing finite individual planning horizons and thereby allowing for overlapping

generations and heterogeneous individuals. As compared to the standard case of

zero mortality and infinite planning horizons, we show that the steady state growth

rates in both settings are lower when mortality is present. The explanation for this

result is that individuals have shorter planning horizons and therefore they are not

willing to invest in R & D to the same extent as in case of zero mortality. The

reason is that revenues of R & D largely accrue in the future and people who face

the risk of death discount the future more heavily than infinitely lived individuals.

Altogether our framework allows us to study the effects of increases in longevity

on the long-run economic growth perspectives of a certain economy. In case of the

Romer (1990) model, increasing longevity is not associated with population growth.

Instead, the mean age of the population increases, which positively affects the per

capita growth rate in the steady state. In case of the Jones (1995) model, increasing

longevity not only raises the mean age of a society, but also increases the population

growth rate. Consequently, there are positive effects of increases in mortality on the

equilibrium growth rate during the transition period as well as on the steady state

growth rate in the long run.

From an applied perspective, the conclusion of our model is that population age-

ing does not itself hamper technological progress and therefore economic prosperity.

Instead, it might be associated with increasing private investments into knowledge

creation as the individual time horizon expands such that these investments are

more likely to pay off. This effect is also supported by empirical evidence which

finds that an increasing life expectancy has a positive influence on per capita output

growth (see for example Kelley and Schmidt (2005)). Of course there might exist
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other – sometimes negative – effects of ageing on per capita growth in the medium

run (e.g. problems in financing pensions or decreases in aggregate productivity)

from which we explicitly abstracted by concentrating on the evolution of technology

in the long run. However, regarding these issues, extensive research has been carried

out recently (see for example Bloom et al. (2008)).

Finally, we can state that there is scope for further research because a constant

mortality rate is still at odds with reality and one could try to introduce age depen-

dent mortality rates. Another promising field for additional investigations could be

to introduce heterogeneity of researchers with respect to age. These issues are on

top of our research agenda.
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A Derivations

The individual Euler equation without ageing: The current value Hamilto-

nian is

H =

(
c1−σ − 1

1− σ

)
+ λ [(r − δ)k + w − c]

The first order conditions are:

∂H

∂c
= c−σ − λ

!
= 0

⇒ c−σ = λ (50)

∂H

∂k
= (r − δ)λ

!
= ρλ− λ̇

⇒ λ̇ = (ρ + δ − r)λ. (51)

Taking the time derivative of equation (50)

−σc−σ−1ċ = λ̇

and plugging it into equation (51) yields

−σc−σ−1ċ = (ρ + δ − r)λ

c−σ−1ċ =
(r − ρ− δ)c−σ

σ
ċ

c
=

(r − ρ− δ)

σ

which is the standard Euler equation. In case of the Jones (1995) model with

population growth, the discount rate has to be augmented by the population growth

rate (see Acemoglu (2009)) such that the individual Euler equation without ageing

becomes
ċ

c
=

(r − ρ− n− δ)

σ
.
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Operating profits for intermediate goods producers: Profits of intermediate

goods producers can be obtained via equation (10) as

π =
r

α
x− rx

=
r − αr

α
x

=
(1− α)

α
rx

= (1− α)px

= (1− α)αL1−α
y kα

i

= (1− α)α
Y

A

Labour input in both sectors: We determine the fraction of workers employed

in the final goods sector and in the R & D sector by using equation (16):

pAλAφ = (1− α)
Y

Ly

(1− α)αY

(r − δ)A
λAφ = (1− α)

Y

Ly

(1− α)α

(r − δ)A1−φ
λ = (1− α)

1

Ly

Ly =
(r − δ)A1−φ

αλ

⇒ LA = L− (r − δ)A1−φ

αλ
,

where the last line follows from labour market clearing, i.e. L = LA + LY .

Steady state growth rate in the Romer (1990) case: We insert equation

(24) into equation (23) to get

g = λL− gσ + ρ

α

= λL− gσ

α
− ρ

α

⇒ g
(
1 +

σ

α

)
= λL− ρ

α

g

(
α2 + (1− α)σ

α2

)
=

λLα2 − (1− α)ρ

α2

g ≡ ḡ =
λLα− ρ

α + σ
,

where ḡ denotes the steady state growth rate.
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Derivation of the steady state growth rate in the Jones (1995) case: We

insert equation (24) into equation (26) to get

g =
λL

A1−φ
− (gσ + ρ)

α

=
λL

A1−φ
− gσ

α
− ρ

α

⇒ g
(
1 +

σ

α

)
=

λL

A1−φ
− ρ

α

g

(
α + σ

α

)
=

λLα− ρA1−φ

A1−φα

g =
λLα− ρA1−φ

A1−φ(α + σ)
.

Since the right hand side is not constant, this is not yet the steady state growth rate

of the economy. We search for an expression where the growth rate is constant, i.e.

the growth rate of the growth rate is zero. Therefore we separate the expression to

obtain

g =
λLα

A1−φ(α + σ)
− ρ

α + σ
.

Taking the time derivative yields

∂g

∂t
=

λL̇αA1−φ(α + σ)− λLα(1− φ)A−φȦ(α + σ)

[A1−φ(α + σ)]2

=
λL̇α− λLα(1− φ)g

A1−φ(α + σ)
(52)

In the steady state, the left hand side is equal to zero such that we can obtain the

steady state growth rate as

ḡ =
n

1− φ
.

The individual Euler equation with ageing: The current value Hamiltonian

is

H =

(
c1−σ − 1

1− σ

)
+ λ [(r + µ− δ)k + w − c] .
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The first order conditions are:

∂H

∂c
= c−σ − λ

!
= 0

⇒ c−σ = λ (53)

∂H

∂k
= (r + µ− δ)λ

!
= (ρ + µ)λ− λ̇

⇒ λ̇ = (ρ + δ − r)λ. (54)

Taking the time derivative of equation (53)

−σc−σ−1ċ = λ̇

and plugging it into equation (54) yields

−σc−σ−1ċ = (ρ + δ − r)λ

c−σ−1ċ =
(r − ρ− δ)c−σ

σ
ċ

c
=

(r − ρ− δ)

σ

which is the individual Euler equation. In case of the Jones (1995) model with

population growth, the discount rate has to be augmented by the population growth

rate (see Acemoglu (2009)) such that the individual Euler equation with ageing

becomes
ċ

c
=

(r − ρ− n− δ)

σ
.

Aggregate capital and aggregate consumption in the Romer (1990) case:

Differentiating equations (35) and (36) with respect to time yields

Ċ(t) = µN

[∫ t

−∞
ċ(t0, t)eµ(t0−t)dt0 − µ

∫ t

−∞
c(t0, t)eµ(t0−t)dt0

]
+ µNc(t, t)− 0

= µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e−µ(t−t0)dt0 (55)

K̇(t) = µN

[∫ t

−∞
k̇(t0, t)eµ(t0−t)dt0 − µ

∫ t

−∞
k(t0, t)eµ(t0−t)dt0

]
+ µNk(t, t)− 0

= µN k(t, t)︸ ︷︷ ︸
=0

−µK(t) + µN

∫ t

−∞
k̇(t0, t)e−µ(t−t0)dt0. (56)
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From equation (30) it follows that

K̇(t) = −µK(t) + µN

∫ t

−∞
[(r + µ− δ)k(t0, t) + w(t)− c(t0, t)] e−µ(t−t0)dt0

= −µK(t) + (r + µ− δ)µN

∫ t

−∞
k(t0, t)e−µ(t−t0)dt0

−µN

∫ t

−∞
c(t0, t)e−µ(t−t0)dt0 + N

(
µw(t)e−µ(t−t0)

µ

)t

−∞
= −µK(t) + (r + µ− δ)K(t)− C(t) + W (t)

= (r − δ)K(t)− C(t) + W (t)

which is the aggregate law of motion for capital. Reformulating an agent’s opti-

mization problem subject to its lifetime budget restriction, stating that the present

value of lifetime consumption expenditures have to be equal to the present value of

lifetime wage income plus initial assets, yields the optimization problem

max
c(t0,τ)

U =

∫ ∞

t

e(ρ+µ)(t−τ)

(
c(t0, τ)1−σ − 1

1− σ

)
dτ

s.t. k(t0, t) +

∫ ∞

t

w(τ)e−RA(t,τ)dτ =

∫ ∞

t

c(t0, τ)e−RA(t,τ)dτ,

(57)

where RA(τ, t) =
∫ τ

t
(r(s) + µ− δ)ds. The FOC to this optimization problem is

c(t0, τ)−σe(ρ+µ)(t−τ) = λ(t)e−RA(t,τ).

In period (τ = t) we have

c(t0, τ) =
1

λ1/σ
.

Therefore we can write

c(t0, τ)−σe(ρ+µ)(t−τ) = c(t0, τ)−σe−RA(t,τ)

c(t0, τ)e(ρ+µ)(t−τ) = c(t0, τ)e−RA(t,τ).
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Integrating and using equation (57) yields∫ ∞

t

c(t0, τ)e(ρ+µ)(t−τ)dτ =

∫ ∞

t

c(t0, τ)e−RA(t,τ)dτ

c(t0, τ)

ρ + µ

[
−e(ρ+µ)(t−τ)

]∞
t

= k(t0, t)︸ ︷︷ ︸
f(t0,t)

+

∫ ∞

t

w(τ)e−RA(t,τ)dτ︸ ︷︷ ︸
h(t)

⇒ c(t0, τ) = (ρ + µ) [f(t0, t) + h(t)] , (58)

where f refers to financial wealth and h to human wealth of individuals. The

latter does not depend on the date of birth because productivity is age independent.

The last line holds because a0 = 1 for any a. Therefore optimal consumption in

the planning period is proportional to total wealth with a marginal propensity to

consume of ρ + µ. Aggregate consumption evolves according to

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

= µN

∫ t

−∞
eµ(t0−t)(ρ + µ) [f(t0, t) + h(t)] dt0

= (ρ + µ)F (t) + µN(ρ + µ)

∫ t

−∞
eµ(t0−t)h(t)dt0

= (ρ + µ) [F (t) + H(t)] . (59)

Note that newborns do not have financial wealth because there are no bequests.

Therefore

c(t, t) = (ρ + µ)h(t)

C(t, t) = (ρ + µ)H(t) (60)
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holds for each newborn individual and each newborn cohort, respectively. Putting

equations (55), (31), (59) and (60) together yields

Ċ(t) = µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0

= µN(ρ + µ)h(t)− µ(ρ + µ) [F (t) + H(t)]

+ µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0

= µ(ρ + µ)H(t)− µ(ρ + µ) [F (t) + H(t)] +

µN

∫ t

−∞

(r − ρ− δ)

σ
c(t0, t)e

−µ(t−t0)dt0

= µ(ρ + µ)H(t)− µ(ρ + µ) [F (t) + H(t)] +
(r − ρ− δ)

σ
C(t)

⇒ Ċ(t)

C(t)
=

(r − ρ− δ)

σ
+

µ(ρ + µ)H(t)− µ(ρ + µ) [F (t) + H(t)]

C(t)

=
(r − ρ− δ)

σ
− µ(ρ + µ)

F (t)

C(t)

=
(r − ρ− δ)

σ
− µ

C(t)− C(t, t)

C(t)︸ ︷︷ ︸
∈(0,1)

which is the aggregate Euler equation that differs from the individual Euler equation

by the term −µC(t)−C(t,t)
C(t)

.

Aggregate capital and aggregate consumption in the Jones (1995) case:

Using our demographic assumptions we can write the size of a cohort born at t0 < t

at time t as

N(t0, t) = βL(t0)e
−µ(t−t0)

= βL(0)ent0e−µ(t−t0)

= βL(0)eβt0−µt0e−µt+µt0

= βL(0)eβt0e−µt.

Integrating over all cohorts yields the population size as

L(t) =

∫ t

−∞
βL(0)eβt0e−µtdt0

= βL(0)e−µt

∫ t

−∞
eβt0dt0.

23



Differentiating equations (42) and (41) with respect to time yields:

Ċ(t) = βL(0)e−µt

[∫ t

−∞
ċ(t0, t)e

β(t0)dt0 − β

∫ t

−∞
c(t0, t)e

βt0dt0

]
+ βL(0)e−µtc(t, t)eβt − 0

= βL(0)e−µtc(t, t)eβt − βC(t) + βL(0)e−µt

∫ t

−∞
ċ(t0, t)e

βt0dt0

(61)

K̇(t) = βL(0)e−µt

[∫ t

−∞
k̇(t0, t)e

β(t0)dt0 − β

∫ t

−∞
k(t0, t)e

βt0dt0

]
+ βL(0)e−µtk(t, t)eβt − 0

= βL(0)e−µt k(t, t)︸ ︷︷ ︸
=0

−βK(t) + βL(0)e−µt

∫ t

−∞
k̇(t0, t)e

βt0dt0.

(62)

From equation (30) it follows that

K̇(t) = −βK(t) + βL(0)e−µt

∫ t

−∞
[(r + µ− δ)k(t0, t) + w(t)− c(t0, t)] eβt0dt0

= −βK(t) + (r + µ− δ)βL(0)e−µt

∫ t

−∞
k(t0, t)eβt0dt0

−βL(0)e−µt

∫ t

−∞
c(t0, t)eβt0dt0 + L(0)e−µt

(
βw(t)eβt0

β

)t

−∞
= −βK(t) + (r + µ− δ)K(t)− C(t) + W (t)

= (r + µ− β − δ)K(t)− C(t) + W (t)

which is the aggregate law of motion for capital. Note that the definition of aggregate

wages is W (t) = L(0)w(t)eβ−γ. By making use of equation (58) we can write

aggregate consumption as

C(t) ≡ βL(0)e−µt

∫ t

−∞
c(t0, t)e

βt0dt0

= βL(0)e−µt

∫ t

−∞
eβt0(ρ + µ) [f(t0, t) + h(t)] dt0

= (ρ + µ)F (t) + βL(0)e−µt(ρ + µ)

∫ t

−∞
eβt0h(t)dt0

= (ρ + µ) [F (t) + H(t)] . (63)

Note that the following definitions apply: F (t) = βL(0)e−µt
∫ t

−∞ eβt0f(t, t0)dt0 and

H(t) = L(0)e(β−µ)th(t). Newborns do not have financial wealth because there are
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no bequests, therefore

c(t, t) = (ρ + µ)h(t)

C(t, t) = (ρ + µ)H(t) (64)

holds for each newborn individual and each newborn cohort, respectively. Putting

equations (61), (32), (63) and (64) together yields

Ċ(t) = βL(0)e−µtc(t, t)eβt − βC(t) + βL(0)e−µt

∫ t

−∞
ċ(t0, t)e

βt0dt0

= βL(0)e(β−µ)t(ρ + µ)h(t)− β(ρ + µ) [F (t) + H(t)]

+ βL(0)e−µt

∫ t

−∞
ċ(t0, t)e

βt0dt0

= β(ρ + µ)H(t)− β(ρ + µ) [F (t) + H(t)] +

βL(0)e−µt

∫ t

−∞

(r − ρ− δ)

σ
c(t0, t)e

βt0dt0

= β(ρ + µ)H(t)− β(ρ + µ) [F (t) + H(t)] +
(r − ρ− δ)

σ
C(t)

⇒ Ċ(t)

C(t)
=

(r − ρ− β + µ− δ)

σ
+

β(ρ + µ)H(t)− β(ρ + µ) [F (t) + H(t)]

C(t)

=
(r − ρ− β + µ− δ)

σ
− β(ρ + µ)

F (t)

C(t)

=
(r − ρ− β + µ− δ)

σ
− β

C(t)− C(t, t)

C(t)︸ ︷︷ ︸
∈(0,1)

which is the aggregate Euler equation that differs from the individual Euler equation

by the term −β C(t)−C(t,t)
C(t)

.

The steady state growth rate in the Romer (1990) case with an ageing

population: We insert equation (46) into equation (23) to solve for the equilibrium
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growth rate

g =
Ȧ

A
= λL− (g + µΩ)σ + ρ

α

= λL− gσ

α
− (ρ + µΩσ)

α

⇒ g
(
1 +

σ

α

)
= λL− (ρ + µΩσ)

α

g

(
α + σ

α

)
=

λLα− ρ− µΩσ

α

g ≡ ḡ =
λLα− ρ− µΩσ

α + σ
,

where again the steady state growth rate is equivalent to the equilibrium growth

rate because the right hand side is constant.

The steady state growth rate in the Jones (1995) case with an ageing

population: The growth rate of the economy is

g =
Ȧ

A
=

λL

A1−φ
− r − δ

α
.

Since we have

Ċ(t)

C(t)
=

(r − ρ− β + µ− δ)

σ
− βΩ,

⇒ r = (g + βΩ)σ + ρ + β − µ + δ,

we can solve for the equilibrium growth rate via

g =
λL

A1−φ
− (g + βΩ)σ + ρ + β − µ

α

=
λL

A1−φ
− gσ

α
− ρ + β − µ + βΩσ

α

⇒ g
(
1 +

σ

α

)
=

λL

A1−φ
− ρ + β − µ + βΩσ

α

g

(
α + σ

α

)
=

λLα− (ρ + β − µ + βΩσ)A1−φ

A1−φα

g =
λLα− (ρ + β − µ + βΩσ)A1−φ

A1−φ(α + σ)
.

Since the right hand side is not constant, this is not yet the steady state growth

rate of the economy. We search for an expression where the growth rate is constant.
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Therefore we separate the expression to obtain

g =
λLα

A1−φ(α + σ)
− ρ + β − µ + βΩσ

α + σ
. (65)

Taking the time derivative yields

∂g

∂t
=

λL̇αA1−φ(α + σ)− λLα(1− φ)A−φȦ(α + σ)

[A1−φ(α + σ)]2

=
λL̇α− λLα(1− φ)g

A1−φ(α + σ)
(66)

In the steady state, the left hand side is equal to zero such that we can obtain the

steady state growth rate as

ḡ =
β − µ

1− φ
.
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