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Abstract

Empirical studies indicate that the transition to parenthood is influenced by an individual’s 
peer group. To study the mechanisms that create interdependencies across individuals’ 
transition to parenthood and its timing we apply an agent–based simulation model. We 
build a one–sex model and provide agents with four different characteristics. Based on 
these characteristics, agents endogenously form their network. Network members then may 
influence the agents’ transition to higher parity levels. Our numerical simulations indicate 
that accounting for social interactions can explain the shift of first–birth probabilities in 
Austria over the period 1984  to . Moreover, we apply our model to forecast age–
specific fertility rates up to .
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Transition to parenthood:  
The role of social interaction and endogenous networks

Belinda Aparicio Diaz, Thomas Fent, Alexia Prskawetz, Laura Bernardi

1. Introduction
Human behavior, including childbearing behavior, is performed by socialized actors deeply 
rooted in a web of social relationships such as those created by kinship, love, power, 
friendship, competition or interest. Beliefs, norms, services, and goods are exchanged, 
traded, negotiated, and enforced within informal social networks of personal communities 
(Mitchell 1974). Within their social circle of relationships individuals may exchange 
information about possibilities and consequences of specific childbearing choices, learn 
about other persons’ preferences, form expectations on their future choices, feel induced to 
conform to others norms about family–related behavior, and modify their interpretation of 
a specific behavior.

Interpersonal interactions among these relatively small groups of individuals 
produce social effects observable in macropatterns of behavior and demographic research 
on union and family formation has concentrated on the latter. Empirical evidence 
increasingly suggests social interaction as an important determinant of demographic 
behavior. Diffusion processes are currently an integral part of the literature on fertility 
decline (Knodel and van de Walle 1979, Watkins 1987, Cleland and Wilson 1987, Mason 
1992, Pollak and Watkins 1993, Palloni 1998). While most research is carried out in 
developing countries some contagion models have been applied to union behavior in the 
European context (Nazio and Blossfeld 2003). Diffusion approaches build on the idea that 
social networks of kin, peers and institutions, in much the same way as markets and legal 
and the administrative system, are potential communication channels for ideas and 
behavior (Granovetter 1985, Rogers 1995).

In socio–demographic research, social determinants due to social interaction gained 
relevance when the empirical evidence provided by the European demographic history of 
the last century showed that regional patterns of fertility decline conformed very closely to 
linguistic, ethnic, and religious territorial boundaries. Some socio–demographers 
interpreted these patterns as the result of an undergoing ideational change diffusing ideals 
about smaller family size across political borders but following cultural lines (Watkins 
1986; Bongaarts and Watkins 1996).

Consequently, the way in which attitudes, values, and norms spread within a 
population became central in research on family and fertility. The effects of social 
interaction mechanisms have been explored by using formal micro–analytical models, their 
effects have been studied through non–agent–based simulations, whose fit with observed 
fertility trends confirm the potential explanatory power of social interaction mechanisms 
(Rosero-Bixby and Casterline 1993, Montgomery and Casterline 1996, Kohler 2000, 
Kohler 2001).
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In all these applications, social interaction enters fertility explanations, both at the 
micro and macro level. Individual and population fertility are interdependent because the 
aggregation of individual fertility behavior produces externalities (like the erosion of 
norms, pressure to conform, and path dependency of the information exchange). Kohler 
(2001) efficiently summarizes the features of this micro–macro link: a) social interaction 
can alter the distribution of knowledge in the population and affect reproductive decisions 
under uncertainty by conveying information on the consequences of low fertility or on the 
dynamics of social change, b) it may establish a collective behavior among community 
members and initiate a fertility change when other factors would instead inhibit it, c) it 
may induce an endogenous transformation of social institutions and social norms.  

The analysis of social mechanisms like social learning and social influence also 
plays an increasingly relevant role in demographic explanations of observed family 
formation patterns in contemporary Europe, such as the hypothesis formulated by Kohler 
et al. (2002) on the emergence of lowest–low fertility. However, the increasing inclusion of 
social interaction in the demographic theoretical framework matches with a relatively 
unrealistic model of social learning and social influence mechanisms (Chattoe 2003). As 
noted by Montgomery and Casterline, this refined modeling of the social processes reposes 
on a weak conceptualisation: “Little is known about learning mechanisms and the 
formation of perceptions in respect to demographic behavior. We are aware of no 
systematic investigation of what would seem to be a central issue” (Montgomery and 
Casterline 1996:159). Not only are the social mechanisms not specified in a satisfactory 
way; similar problems exist in defining the influential relationships on childbearing 
decision–making.  

This lack of precision seems to constitute a general problem in the development of 
demographic behavior theory. Specifically, there is a certain agreement that demography 
suffers from a poor level of precision in theoretical construction, a statistical modeling that 
is either not, or not sufficiently, theory–driven, and the non—or hard—observability of 
important concepts and indicators involved in the theory (Burch 1996, de Brujin 1999). 
This weakness is partially due to the inadequateness of demographers’ methodological 
toolbox in answering relevant demographic questions. The very recent inclusion of agent–
based simulations and systematic and comparative in–depth investigations offer new 
possibilities to develop cognitive valid behavioral theories and to speculate on the 
consequences of alternative micro–macro feedbacks in order to explain demographic 
patterns (Billari and Prskawetz, 2003, Billari et al. 2003, Billari et al., 2006).  

In this paper we introduce an agent–based model to study social interaction and, in 
particular, endogenous network formation and its implication for changes over time in the 
transition to parenthood. In the first place, such a model allows us to test whether changes 
in age–specific fertility experienced in the past can be explained by social interactions. 
Secondly, we can use this model to project age–specific fertility rates. Hence, our model 
we develop is not intended to explain the pattern of age-specific fertility but is designed to 
explain how this pattern changes over time.  

In section 2 we introduce the theory and hypothesis of fertility transitions and 
social interaction and endogenous networks. Section 3 is devoted to the implementation of 
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the model. The data we use to calibrate our model are discussed in section 4. Simulation 
results and fertility projections based on these simulation results are presented in section 5. 
Finally, section 6 concludes our findings.

2. Social interaction and fertility: theory and hypothesis
Studies on fertility timing in developed countries have a strong explanatory role with 
respect to individual life course transitions. These contributions include educational, 
occupational, partnership, and geographical mobility histories. The postponement and 
increasing variability in these processes has often been associated with the observed delay 
in childbearing. To account for fertility preferences in general, family background 
variables or, more generally, early life experiences, constitute key indicators (Axinn et al. 
1994).

Individuals’ fertility behavior depends not only on family background variables, 
and life course paths, but also on the behavior and characteristics of other individuals as 
transmitted through social networks. Several authors have emphasized the importance of 
social interactions for fertility choices (Bongaarts and Watkins 1996; Montgomery and 
Casterline 1996; Bernardi 2003). As Bongaarts and Watkins (1996) argue, social 
interactions have at least three aspects: the exchange of information, the joint evaluation of 
its meaning, and social influence that constrains or encourages action. A comprehensive 
survey of fertility and social interactions is documented by Kohler (2001). To understand 
the divergence in the demographic behavior of different populations with relatively similar 
environmental conditions, Kohler argues for a combination of economic fertility theory 
(based on individual optimal and rational decision rules) and theories on social interaction 
(which incorporate the behavior of other members of the community/society). Another 
contribution that emphasizes the relevance of social interactions in the context of low 
fertility is by Kohler et al. (2002). They find that all lowest–low fertility countries, i.e. all 
countries with total fertility rate (TFR) less than 1 3  have experienced a sharp increase of 
the age of first birth and argue that this observation cannot be explained by changing 
socioeconomic incentives alone: Social interactions (either impersonal, for example, 
through the labor market or personal ones through peer groups for instance) must have 
induced multiplier effects or multiple equilibria. Lyngstad and Prskawetz (2006) on the 
basis of Norwegian register data investigate whether siblings’ fertility decisions influence 
each other. Their results indicate that cross–siblings effects are relatively strong for the 
respondents’ first birth, but weak for the second parity transition. A further interesting 
demonstration of how social interaction affect demographic behavior is given by Åberg 
(2003) who examined how the high–school peers of young Swedes influenced their 
propensity to marry. She found that the share of peers’ married had positive effects on the 
marriage rate, indicating that social interaction is in part driving individuals’ marital 
decisions.

So far, two avenues have been explored in the literature. On the empirical side, 
studies have aimed to identify or control for potential effects of social interaction on 
fertility (Bernardi 2003, 2007). On the more formal side, models have been developed that 
exogenously define the structure of the social network and investigate its implication on 
demographic behavior (Hernes 1972, Kohler 2001). In the present paper, we follow a 
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recent development in the network literature that aims to endogenously build up the social 
network structure (Watts et al. 2002). For this purpose, we choose the framework of an 
agent–based model where the mechanisms underlying the behavior of each agent — in 
particular, the choice of social network, which in turn influences the fertility decision — is 
explicitly modeled.

For an individual, the social network (the set of “relevant others”) consists of 
people who are close. Closeness is a general feature we shall exploit in what follows. In 
our context, the term “close” refers to a distance that may represent a spatial distance, but 
might as well represent a distance in terms of kinship, age, education, professional 
occupation, and so on. Closer individuals are more likely to be relevant others. The size 
and characteristics of an individuals’ social network may themselves depend on the 
individuals’ characteristics. For instance, the number of relevant others increases with age 
during youth and adulthood, at least up to ages that are important for processes such as 
getting married or having children (Micheli, 2000). The literature on social networks has 
further shown dependencies on additional individual characteristics and conditions under 
which the social network changes:

Age: The aging process produces a reduction in the size but an increase in the density of 
network partners since non–kins drop out (Wagner and Wolf 2001). But these changes 
seem to reflect life course transitions rather than aging itself.  

Marital status and parental status: There is extensive and consistent evidence on the 
variation of network by marital and parental status, from cross–sectional comparative 
studies and longitudinal studies. Wellman et al. (1997) analyzed the changes in intimate 
ties of individual informal social networks in Toronto between 1968 and 1978. They find 
that the intimate relationships are relatively unstable over ten years. The median network 
has retained only about one quarter of its initial members and family situations rather than 
aging itself account for this turnover. Not surprisingly, marital change (getting married or 
divorced) seems to be the main triggering process for changes in the network: those who 
experienced it replaced almost all (94%) of their network. Immediate and distant kin are 
the most persistent ties compared to friends and neighbors. The transition to parenthood 
seems to affect the circle of non–kin, whose members change even in the short one–year 
time frame after pregnancy (Ettrich and Ettrich 1995). The shift in the composition of 
social networks taking place after the transition to parenthood is consistent with the results 
from three similar studies in the United States and England, where parents’ networks and 
non–parents networks are compared (Hammer et al. 1982). In addition to the positive 
association between rearing of children and increased emphasis on kin connections, the 
non–kin network composition shifts by including a higher number of friends as opposed to 
working relationships.

Employment status: Hammer et al. (1982) find that motherhood decreases the total network 
size essentially only for non–working mothers in the lowest social class. Moreover, they 
find that among mothers, the composition of the network between kin and non–kin 
members depends on the employment status. The number of kin within a network is higher 
for non–working mothers than for working mothers, whereas the number of non–kin 
network members is higher for employed mothers.  
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Education and gender: Moore (1990) finds that most differences between gender in the 
social network composition of men and women in the US disappear when one controls for 
age, employment, and marital and parental status. Higher education or 
professional/managerial occupation entails a larger share of the network composed of non–
kin (Moore, 1990, p.732, table 3). The only persistent difference is that women, compared 
to men, are more “kin–keepers” (the share of kin that characterizes women networks is 
larger when compared to men in similar structural positions).  

We build up the social network of individuals based on a hierarchic structure of 
social groups, where each individual is part of one group for each relevant characteristic. 
We restrict the number of characteristics that determine the affiliation to a social group to 
three: age, education, and intended education. The choice of these three characteristics is 
based on the empirical findings summarized in the preceding paragraphs. Each individual 
is part of three social groups. Individuals within one group are close, and therefore more 
likely to belong to the same social network. Members of the social network influence the 
behavior of each other through interaction. In our model, we assume that as the share of 
mothers within the social network increases, the desire to give birth is intensified. In the 
next section we introduce the agent–based model, focusing on the implementation of the 
endogenous social network.

3. Model implementation
We set up a one–sex model that allows us to simulate the different life cycle stages of 
females. Although partnership plays a major role in the transition to parenthood, we refrain 
from including mate–search into our model since it would increase the complexity of the 
model and complicate the interpretation of the results.  

Each individual agent has an identity number , four characteristics, and a social 
network that includes friends, siblings, and the agent’s mother.

id
1 The agent’s characteristics 

are age x, education e, intended education ie, and parity p. We set the lower and upper age 
limit of reproduction to be equal at 15  and 49  years respectively and the maximum age of 
our agents as 95  years. Though agents older than  cannot give birth in our model, they 
still may influence other agents.  

49

Education is an influential factor for social network formation and size (cf. Section 
2) and thus becomes our second characteristic. We assume that all children, i.e., 
individuals younger than 15 , have no education at all beyond the compulsory years of 
education, hence their education is zero. For older individuals we distinguish three stages 
of education: primary and lower secondary, upper secondary, and tertiary.

Since education affects an agent’s network not just on the day of graduation but has 
influenced it already during training, we further include intended education as an important 
characteristic of the agent.2 Based on these three characteristics — age, education and 

1The agent’s mother and siblings are not known for the initial population. 
2The argument to include intended education in addition to attained education is based on the anticipatory 
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intended education — an adult agent chooses on average  members for her social 
network. These members influence the agent’s decision on childbearing, i.e. her parity, 
which constitutes the fourth characteristic of the agent. We use six stages of parity, 0 to 5+. 
An individual who gives birth to a child increases her parity by one. The agent’s desire to 
give birth, that is to increase parity, is weakened or intensified by the influence of the 
social network . A summary of the agent’s characteristics and parameters is shown in 
Table 1.

s

snw

Table 1. Summary of the agent’s characteristics and parameters.

Agent variables values

Identity number id 1 - N 
Education e 0 - 3 
Intended education ie 0 - 3 
Parity p   0 - 5+ 
Age at first birth a 15 - 49 
Social network snw   0 - N-1 

Initial population

We initialize the simulation with  individuals and base our simulations on Austrian data, 
as defined in section 4. The Austrian age distribution for females constitutes the initial age 
distribution. The level of education of individuals aged 15  or older is assigned according 
to the Austrian age–specific educational distribution for females. On the basis of the 
assigned age and educational level, each agent is assigned her parity according to the 
Austrian age and education specific parity distribution of females.  

N

Since most people finish their education before they turn , we assume that the 
educational distribution at age 30  in the base year determines the intended education at 
earlier ages.

30

3 Since empirical data show that transition to higher education is more 
common for non-mothers than mothers, we further consider the agent’s parity when 
assigning the intended education. Hence, we need to take the agent’s age x , parity p , and 
educational level  into account when assigning intended education.e

To assign intended education to a woman of age [x y y 5) , parity p  and 
education level  we start with the parity distribution by age and education from the 
census of the base year (see section 4). We denote  the share of women at parity 

e
( )yeq p p

within the group of women at age [ 5)x y y  and at the level of education e . From the 

                                                                                                                                                   
analysis in life–course research discussed in Hoem and Kreyenfeld (2006).
3 Of course, some individuals finish secondary or tertiary education later than age 30. Therefore, it seems to 
be desirable to look at the educational distribution, for instance, at the age of 40 or 50 to be sure not to lose 
any individual obtaining a higher level of education during her life course. However, applying the 
educational distribution of older cohorts would result in a bias toward lower levels of education since higher 
education was not that common for older cohorts—this holds in particular for females. 
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population census we obtain the shares of women aged 30  with level of education 1 2e ,
and 3 : , , and .1q 2q 3q

The shares of the parity–age–education–specific groups are then multiplied by the 
share of the corresponding educational level at age 30 to determine the probability for each 
level of intended education. Thus, for all agents aged 15 to 29 with the current level of 
education equal to 1 and parity p  the probability, 1pr , to be assigned an intended 
education , or  is given as1 2ie 3

1 3

1

( )
( 1 )

( )
i yi

j yjj

q q p
pr ie i e p

q q p

We do not allow an intended education ie  lower than the already achieved education .
Therefore, agents with  are assigned intended education 

e
2e 2ie  or 3  according to

1 3

2

( )
( 2 )

( )
i yi

j yjj

q q p
pr ie i e p

q q p

and agents with 3e  are assigned 3ie . Agents younger than 15  are not assigned an 
intended education, and for all individuals above the age of 28  the intended education ie
is set equal to the actual education.4 Moreover, individuals at educational level 1 and older 
than  are also assigned actual education 1 as their intended education since transition 
between levels 1 and  practically happens only up to the age of 20 . Thus, the intended 
education is assigned randomly. It is based on the educational distribution of females at 
age  in the base year and subject to the following restrictions:  

20
2

30

ie e  for all agents  
ie e  if ( ) OR (28x x  20 AND e  = 1). 

For agents with parity greater or equal to 1 an age at first birth  is assigned 
according to the education–specific distribution of age at first births (cf. section 4). Since 
the behavior of women in training for education level  is more comparable with the 
behavior of those who have already achieved the level , we assign the age at first birth 
according to the agents’ intended education ie . Once all initial agents have been assigned 
their individual characteristics, adult agents create their social network by choosing 
relevant others based on the three characteristics: age, education, and intended education.

a

e
e a

Simulation steps

During each simulation step, each agent ages by one year and dies off at the age of 95. 
Individuals younger than 15 are considered as children without education. At age 15 an 
                                                
4Although some individuals advance to higher levels of education above that age limit, the period data on 
which we base the empirical estimations do not lead to strictly positive transition rates for that age group. 
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individual becomes an adult with education level 1 and an intended education assigned on 
the basis of the education distribution of the population aged . Further she builds her 
own social network, which includes friends chosen according to the procedure described 
below. Agents born during the simulation already have a social network consisting of their 
mother and siblings.

30

5 Though children do not exhibit their own social network of friends, 
they can nevertheless be part of one. When an agent turns 50, we assume that childbearing 
ceases. However agents older than 50 may still influence adults of childbearing age.  

In the course of the simulation an adult agent may change her educational level. 
The age–specific educational transition rate is based on empirically observed transition 
rates for Austria (see section 4). From empirical data we know that non–mothers are more 
likely to increase their level of education, likewise are agents with a higher intended 
education. To achieve this, we scale the empirical education transmission rate by the 
following multiplier  

( 1 ) ( 1 )( )
( ) ( 1 ) ( 1 )

x p ie

ppae x e p h e iew c
a c ppae x e p h e ie

where  is the share of agents with the vector of characteristics . We 
assume that every agent may increase her educational level but postulate that those who 
have not yet attained their intended education are subject to a higher transition rate. The 
multiplier  captures this assumption. It makes sure that within the set of agents 
who progress from the level of education e  to 

( )a c ( )c x e ie p

( 1 )h e ie
1e  the share of those with intended 

education  less than  is smaller than the share of those with ie  greater or equal ie 1e 1e .
For the transition from education level 1 to level 2 we apply the weights

1 if 1
25
12(2 ) if 2
25
12 if 3
25

… ie

h ie … ie

… ie

and for the transition from level 2 to level 3 we apply

1 if 1
25
1(3 ) if 2
25
23 if 3
25

… ie

h ie … ie

… ie

5Through the inclusion of the mother as a peer, we attain the effect that the number of siblings influences the 
agent’s fertility, in addition to the parity of the siblings themselves. 
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In detail, in the group progressing from level 1 to level 2 the share of agents with 
 is 4 percent (i.e. 1/25) and the shares with 1ie 2ie  and 3ie  are 48 percent each 

(12/25), while in the group progressing from level 2 to 3 the shares with  and 1ie 2ie
are 4 percent each (i.e. 1/25) and the share with 3ie  is 92 percent (23/25), provided there 
are enough agents with each particular intended education.

As empirical data evidence that women with a higher parity have a lower transition 
rate to higher education — in particular there is a pronounced difference between mothers 
and non-mothers — we apply the multiplier ( 1 )ppae x e p , which represents the 
empirical share of women with parity p  at age x  and education 1e . Since these data are 
only available for five–year age groups we assume that half of the births happened after the 
transition to e+1 and the other half before the transition.

Endogenous social network

As mentioned in the introduction, our model should take into consideration that links in a 
social network may be based on any individual characteristic like age, kinship, love, 
power, friendship, professional occupation, geography, and so on. Thus, we have agents 
living in a multidimensional space, where each dimension represents one characteristic. 
Watts et al. (2002) introduced a searchable network taking into account that individuals 
partition the social world in more than one way. They applied this network to explain the 
process of delivering messages to a target person. In the sequel we will use a similar 
network structure for the diffusion of childbearing behavior.

The agents within such a searchable network exhibit network ties and individual 
characteristics. For our purpose we consider the characteristics age, education, and 
intended education to create a social network . Watts’ approach envisions that 
individuals organize the society hierarchically into a series of layers, where the top layer 
represents the whole population, which is split according to the agent’s characteristics into 
smaller subsets of individuals, which are likewise split into more specific subgroups. The 
social groups that are formed through this hierarchic division depend on the branching 
ratio b  and the group size  of the lowest hierarchic level. Branching ratio and group–size 
are exogenous parameters, which, together with the number of individuals, determine the 
depth of the network hierarchy . An agent is influenced by her social network 
concerning her childbearing behavior.

snw

g

l snw

Since the number of agents is continuously changing in our simulations, the 
hierarchy depth l  needs to be recalculated in each simulation step. For this reason we 
suggest a slightly different variant as compared to the Watt’s procedure. We fill the 
hierarchic groups sequentially with agents instead of literally splitting the population into 
groups. Through this approach we avoid missing groups and fluctuating group sizes which 
would occur due to the changing population size. The similarity among any two 
individuals, , is given by the height of their lowest common ancestor level in this 
hierarchy. If two individuals  and 

ijd
i j  belong to the same group, we define their similarity 
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ijd  equal to 1, if they belong to different groups that are directly connected, their similarity 
becomes  and so on. For instance agents  and 2ijd i j  in Figure 1 are in different groups 
which are not directly connected. To find the lowest common ancestor we need to trace 
back the branches two levels upwards. Therefore, the distance between i  and j ,  is 
equal to three.   

ijd

Figure 1 Partitioning of the population into groups of size g = 5 

The probability of acquaintance (i.e. the probability of a link) between two 
individuals with a distance  is given byd

2 ( ) exp( )pr d c d  (1) 

with  being an adjustable parameter and c being a constant required for normalization. 
Thus, even two individuals belonging to the same group are not necessarily connected. 
However, if the parameter , determining the agent’s level of homophily, is assigned high 
values, the chance of a connection between individuals in the same group becomes high. 
To build up the social network an agent chooses a distance d  according to the above 
probability distribution (1) and then picks a friend uniformly among all individuals with 
distance .d 6 This procedure is repeated until an average number of peers, , is found. The 
mean network size is an exogenous parameter. The actual number of friends for an agent is 
log–normally distributed.  

s

Since individuals belong to three groups (by age, education, and intended 
education) the procedure described in the previous paragraph is repeated for each 
characteristic. Since we postulate that the characteristics are independent people belonging 
to the same group in one dimension may be far away from each other in another 
dimension. However, if there is a link established in one dimension due to the random 
process described above, the agent considers the chosen agent to be a part of her peer 
group. Whereas the social network  of agents in the initial population consists only of snw

6Technically this procedure is implemented in the way that the agent draws a random number in the interval 
(0,1) and the random number then determines the specific value of d as determined by the probability 
distribution (1). 
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members chosen by way of the above algorithm, the social network of agents created 
during the simulation also contains their mother and siblings.  

Since networks are known to be unstable over time, we assume that each adult may 
exchange one or more members of her social network. Wellman (1997) found that after ten 
years the median network retains only 27  of its initial members. If an agent exchanges 
each member of her network with a probability 

%
3pr , the probability for an initial member 

to still belong to the network after ten years is 10
3(1 )pr . Setting this expression equal to 

 implies a probability for each member of the particular agent’s social network to be 
exchanged of pr3=0.129. To implement these observed network changes we proceed as 

follows. Since there are 

0 27

is
n

 possibilities to choose  agents out of a network of size ,

the probability to exchange exactly  network members is given as  

n is

n

4 3( ) (1 ) ii
3

s nns
pr n pr pr

n
 (2) 

After drawing a random number  for each agent according to this probability distribution 
the agents removes  randomly chosen members from their network and choose n  new 
members in the same way as during the initialization of the network.  

n
n

Social influence and parity transition

An adult agent (aged between 15 and 49) may give birth to a child. The decision to change 
her parity status is influenced by her social network (Bernardi 2003, 2007). The propensity 
to have a first child increases with the share of parents within the agent’s social network. 
Similarly the propensity to higher order births increases with the share of parents of higher 
order parity. To ensure that the social influence modeled at the individual level is 
“anchored” at the social influence we observe at the macro level, we postulate that the 
social influence vanishes if the parity distribution of an agent’s network coincides with the 
parity distribution at the macro–level.  

Formally, the social influence  for an agent of parity si p  is modeled as a function 
of the difference between the share of mothers at parity p p  within the social network, 

, and in the whole population, rop ROP . The social influence positively (or negatively) 
affects the age– and parity–specific birth probabilities  of Austria (see section 4).bpr
To determine the social influence , we first define the relevant share of network 
members  whose parity exceeds the agent’s parity 

si
( )rop p p .

{ AND
( )

{ AND
j

j

# j p p j snw
rop p

# j p p j snw
}
}

 (3) 

where jp  denotes the current parity of agent j  who is a member of agent ’s social 
network , and  denotes the number of network members 

i
snw { AND }j# j p p j snw
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with parity greater p . Note, that for higher–order births we ignore (in the numerator of 
equation (3)) those agents within the peer network who are at parity p p .7 Likewise, we 
compute the share of adult agents with parity greater p , ( )ROP p , on the aggregate level,

{ }
( )

{ }
j

j

# j p p
ROP p

# j p p

The difference between ROP  on the aggregate level and rop  on the individual level 
determines the social influence on an agent’s age– and parity–specific birth probability 

. We model social influence as an s–shaped function with slope (bpr x p) ,

exp( ( ( ) ( )))( ) 0 1 0 95
1 exp( ( ( ) ( )))

rop p ROP psi p
rop p ROP p

 (4) 

The parameter  gives the intensity of the social influence when the share of 
network members of a specific parity diverges from the one on the aggregate level. 
Choosing 0  results in a social influence of 1 in any case, which means that the 
influence of the social network is completely ignored. Lyngstad and Prskawetz (2006) 
point to a weaker influence for second births, thus we reduce the social influence for higher 
order births  by decreasing ( 0)si p  to a fifth of its original value.  

The value  is multiplied with the empirical age– and parity–specific birth 
probability at time t ,

si
(t )x pbpr , to take the social influence into account. Thus, an agent i

at age x  gets assigned a probability of birth,  

( ) ( ) ( )i tbpr x p x p si pbpr  (5) 

The multiplier given in (4) ensures that the birth probability  of an agent i
facing a value of  within her social network, which is equal to 

( )bpr x p
rop ROP  on the aggregate 

level is not being distorted. Put differently, when the social influence at the individual/ 
micro level is equal to the social influence at the macro level we assume that the social 
influence vanishes (i.e. it is equal to one). In case that the micro level share  differs 
from the macro level share 

( )rop p
( )ROP p , the social influence is assigned a value in the range 

(0.95, 1.05) assuming that positive and negative deviations are symmetric. To also allow 
for an asymmetric social influence, but retaining the condition of  if 1si

( ) ( )ROP p rop p , we introduce the asymmetry through the slope . We postulate an 
asymmetry that strengthens the positive and weakens the negative social influence. More 
precisely, a social influence function with slope 6  and an asymmetry of %, as 
shown in Figure 2, actually leads to an influence function with slope 

30
6 1 8 4 2  for 

7Bernardi et al. 2007 found that women who already have children do not refer to childless peers concerning 
former fertility decisions. 
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negative influence, thus for agents with a lower  at the individual level than ( )rop p
( )ROP p  at the macro level, and a slope 6 1 8 7 8  for positive influence. In this 

way we achieve that the asymmetric social influence modeled at the individual level is 
again “anchored” at the social influence we observe at the macro level.

Figure 2 Symmetric and asymmetric social influence function 

The individual changes on the micro level result in a modified probability to give 
birth at the macro level. Thus, the according probabilities at 1t  become  

1
( ) ( ) (tt t )x p x p xbpr bpr si p  (6) 

where (si x p)  is the average of the social influence values si  of all agents at age x  and 
parity p . These updated probabilities to give birth enter equation (5) for the next time 
step.

Transition to parenthood: After transition to parenthood an agent increases her parity by 
one. Since we work with a one–sex model we refer to the Austrian sex ratio at birth 
(see section 4) as a multiplier for the number of new agents. Hence only the female babies 
are created as new agents. Then they age each simulation step until arriving at adulthood 
(at age 15) when they choose their friends for the social network. During the childhood an 
agent’s network only consists of the agent’s mother and siblings, to whom the new agent is 
also added as a network member.  

srb
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4. Data
Age Distribution:  For the initial population we alternatively use the age–distribution of 

Austrian females in 1981, 1991 or 2001.8

Figure 3 Age distribution for the Austrian female population in 1981 and for the initial population of 
one simulation starting from the same year. 

Distribution by Age and Education:  We assign the level of education according to the 
agents’ age. Agents younger than 15  receive education , while all other agents 
are assigned as primary/lower secondary, upper secondary, or tertiary education 
according to the age–specific educational distribution of Austrian females in 1981, 
1991 or 2001.

0

9

We distinguish (for adult agents) three stages of education, whereas the Austrian 
data we use as input distinguish  to 8  stages. We therefore merged these groups 
as follows: (i) primary/lower secondary education encompasses basic schooling (up 
to 9 years) and lower secondary education (including apprenticeships and normally 
between 10 and 12 years of schooling), (ii) upper secondary education encompasses 
the Austrian “Gymnasium” and its equivalents, such as corresponding non–
academic vocational training at a similar level, and (iii) tertiary education 
(including postgraduate studies, the training of primary school and gymnasium 
teachers, art academies, and so on).  

6

Distribution by Age, Education, and Parity:  Based on the Austrian distribution by 
age, education and parity of 1981, 1991 or 200110, we assign a corresponding parity 

8Source: Statistik Austria (2005a), Table 8.7. 
9Sources: Statistik Austria (1985), Table 13, Statistik Austria (1994), Table 14, Statistik Austria (2004), 
Table 15. 
10Sources: Statistik Austria (1989), Table 50, Statistik Austria (1996), Table 48, Statistik Austria (2005c), 
Table 47. Analogous to the distribution by age and education, we merge the eight educational groups into 
three groups.
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for the initial agents.  

Parity–specific Birth Probability by Age:  The birth probabilities we apply in our 
simulations derive from computations by Tomas Sobotka on the basis of data 
provided by Statistik Austria. Unfortunately these data are only available from 1984 
onwards. For simulations where we start with the 1981 initial population we need 
to apply the birth probabilities of 1984. For the other experiments we use the 
corresponding data from 1991 and 2001.

Educational Transition Rate by Age:  The age–specific transition rates for educational 
groups are based on period measures. We alternatively start from the age and 
educational structure of the population in 1981, 1991, or 2001 and denote ( )F x e
the number of agents at age x  and with educational level . For each age group we 
build the share of females having primary or lower secondary, upper secondary and 
tertiary education:  

e

( )( )
( )

e

F x ef x e
F x e

By working with shares instead of absolute values we control for different cohort 
size. We then presume that the age and educational structure of the population stays 
constant over time and build the age–specific transition rates as follows: 

( 1 1) ( 1( )
( )

f x e f x et x e
f x e

)

where  indicates the transition rate at age ( )t x e x  from the educational level  e to 
level e+1 in the next time step.  

Age at First Birth by Education:  We use data on age at first birth, taking into account 
the mother’s level of education from the census. Since these data are only provided 
for five–year age groups we interpolate the data with piecewise cubic hermite 
polynomials to obtain age at first birth by single years of age.

Sex Ratio at Birth:  Since we do not include male agents in our model, we need the sex 
ratio at birth to calculate the number of new agents per simulation step. We again 
use Austrian data11 of the particular base year for this purpose.

5. Simulation results
In this section we discuss the results from simulations of the agent–based model introduced 
in the previous sections. We set the population size equal to 6000N  and present the 

11 Statistik Austria (2005b), Table 2.26.  
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average over 200 simulation runs. Since our focus is on the transition to parenthood we 
primarily present developments of the mean age at first birth and the probability of a first 
birth. We also present the age–specific fertility rate for selected results.  

As a benchmark, Figure 4 presents results of a simulation where we ignore social 
influence. We start with an initial population distributed according to the population in 

 and exposed to the Austrian birth probabilities of 1984 and simulate it forward in 
time for 20 years.
1981

12 Obviously this benchmark model can neither replicate the increase in 
the mean age at birth (of two and a half years) nor the shift in age–specific first–birth 
probabilities during this time period. By neglecting the role of social influence we fail to 
replicate the fertility development that occurred between 1984 and 2004.

Figure 4 Simulation results for simulating 20 years starting from 1984 without social influence ( =0). 

Our experiments that take into account social influence indicated that most 
parameters have hardly any effect on the simulation results. The most influential 
parameters turned out to be the slope of the social influence function  and the parameter 

, which gives the homogeneity within social networks. In Figure 5 we show the 
adjustment for these two parameters starting again from an initial population that is 
distributed according to the Austrian population of 1981 and is exposed to the birth 
probabilities of 1984. Starting from 6  and 0 75  Figure 5a and Figure 5b, 
respectively, present the development of first–birth probabilities between 1984 and 1994 
for alternative settings of  and . All other parameters get assigned the following 
values: We set the group size of the hierarchy equal to  individuals ( ), the 
branching ratio b  equal to  (see Figure 1) and postulate an average size of the network of 

 peers ( , Fliegenschnee, personal communication, 2006).

5 5g
2

10 10s

12Note that we have data on birth probabilities only from 1984 onwards. Hence, we need to combine the 1981 
census data with 1984 birth probabilities. 
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Figure 5 Simulation results for simulating 10 years starting from 1984 with different parameters 
and .

Compared to the results in Figure 4, where we ignore social influence, Figure 5 
demonstrates the potential role of social influence to replicate the change in first–birth 
probabilities over time. A comparison of the simulation results with the actual first–birth 
probabilities in 1994  reveals that the choice of 6  and 0 75  is appropriate.

Table 2. Default values for model parameters

Model Parameters default 

Number of initial agents  N 6000
Number of simulation years  y 20
Branching ratio b 2
Group size g 5
Homogeneity within social 
networks 0 75

Slope of social influence 
function 6

For extreme values of , the postponement of first births would be overestimated 
( 15 ) or underestimated ( 3 ). The parameter  also has an interesting effect on the 
results (Figure 5b). A rather small value of  (agents are relatively indifferent about the 
similarity of network members, thus they interact with any other agent regardless of their 
characteristics) leads to hardly any change of fertility behavior. Due to the mixture of 
groups all agents have about the same social influence, and thus are not forced to change 
their fertility behavior. For values of  above one half, the particular value of  no longer 
has a strong influence.

Figure 6 depicts the results of a set of simulations that replicate the observed 
fertility developments during the last decades. Austrian data from 1981 provide the basis 
for the initial population distribution, and agents at reproductive ages are exposed to the 
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parity–specific birth probability of 1984 . Model parameters are set according to the default 
values discussed above and summarized in Table 2. We run our simulations for 20  years 
up to the year 2004  and compare the results with actually observed data in Austria as 
provided by Statistik Austria. A thorough sensitivity analysis indicates that we obtain the 
best fit to actual data by postulating an asymmetry in the functional form of the social 
influence for the 1990 s. Thus we add an asymmetry of 30% (see Figure 2) during this 
decade and an asymmetry of 60% from  onwards. The social influence on fertility 
behavior is therefore amplified if  and dampened for 

2000
rop ROP rop ROP .

Figure 6 Simulation results for simulating from 1984 
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A comparison between the observed and simulated time series of the mean age at 
first birth validates the promising performance of our proposed model (Figure 6a). Age–
specific probabilities of first birth in 10 –year intervals are presented in Figures 6b and 6c. 
The three series depict respectively the empirical birth probability of the base year, 1984
and the year 1994  in Figure 6b and  in Figure 6c together with the simulated birth 
probability of the latter years. In both cases the shape of the simulated curve is nearly 
identically to the empirical one. The remaining graphs, Figures 6d to 6g illustrate the 
evolution of the age–specific fertility rates over time. The first two charts verify the 
temporal progression of these rates in Austria (Figure 6d) and during the simulations 
(Figure 6e). The shift, presented in four–year steps, proceeds likewise in the simulation, as 
it did in reality. The similarity between simulations and empirically observed data becomes 
even more obvious when we consider the last two graphs (Figures 6f and 6g) where we 
present a direct comparison between the Austrian age–specific fertility and the simulated 
ones after 10  years, hence in 1994  (Figure 6f) and for the year  (Figure 6g). The 
results of our simulations slightly underestimate the rates for 1994 . This difference is 
caused by a pronounced increase in probability for second births during this period. This 
rise is not replicated in a similar vein by our simulations.  

2004

2004

In a further experiment we initialize the model with Austrian data from 1991 and 
run our simulation for  years up to . We apply the same set of parameters and the 
same asymmetry in the social influence function as in the previous simulations. Results for 
this experiment — both historical developments (from 1991 to 2001) and some first 
projections (to ) — are summarized in Figure 7. The mean age at first birth 
(Figure 7a) depicts the same increasing trend as in Figure 6a. The empirically observed 
line is slightly above the simulated one, as caused by a bend in the early nineties, which is 
not replicated by our model. After the first 10  years of the simulations, the probability of 
first birth comes close to the empirically observed curve in 2001 (Figure 7b). Further 
simulations for another 10  years yield the first–birth probabilities in  (Figure 7c). 
Since similar data are not available from Statistik Austria, we compare the 2011 time 
series of first–birth probabilities with the corresponding (last obtainable) empirical data 
from . The evolution of age specific fertility rates (empirically observed and 
projected ones by Statistik Austria for  as well as simulated ones) from 1991 to 
is presented in Figures 7d through 7g. Simulated fertility rates for 2001 (Figure 7f) 
overestimate the empirically observed rates (particularly for ages between 25 to 29). This 
difference can be explained by the extremely low fertility rate in Austria during 2001 as 
caused by a change in family policies (introduction of new child benefits in the following 
year). In 2001 the total fertility rate reached a low of 1.33 as compared to1.36 in 2000 and 
1.39 in 2002. The latter Figures are closer to the simulated fertility rate of 1.39 for the year 
2001.

20 2011

2011

2011

2005
2011 2011
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Figure 7 Simulation results for simulating 20 years starting from 1991 

So far, we have demonstrated that our model is capable of reproducing shifts in the 
timing of fertility that occurred during the last decades. Note that our model is not intended 
to explain the general pattern of age–specific fertility — which is given as an explicit input 
— but is designed to explain how this pattern changes over time. Next we apply our model 
to project future trends of fertility and compare our projections to the age–specific fertility 
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assumptions applied by Statistik Austria for their recent population projection (Hanika, 
2006). While population forecasts are usually based on time series extrapolation of recent 
fertility trends combined with some expert knowledge, our approach has a theoretical 
foundation. We use a causal model to explain trends in timing of fertility rather than 
continuing existing trends. Sanderson (1998) argues that combining forecasts from causal 
models with standard forecasts results in more accurate predictions if the forecast errors of 
the two different approaches are not highly correlated.

Figure 8 Simulation results for simulating 20 years starting from 2001 

Starting from the year , we forecast fertility rates to 2021. We retain the 
model parameters as in previous simulations and postulate an increase in the asymmetry of 
the social influence from 30 % prior to 2010 to % from 2010  onwards. Figure 8 depicts 
simulated age–specific fertility rates and those assumed by Statistik Austria respectively 
for  and . The simulated rates for  (Figure 8a) are considerably lower 
compared to the assumptions by Statistik Austria. This underestimation of fertility rates in 
our simulations is mainly caused by the exceptionally low fertility rates in Austria in ,
which is the base year of the current simulation. The relatively low birth probabilities of 

, especially for the age group  to , are passed on through the whole simulation, 
implying also the quite low fertility rate in  (see Figure 8b).  

2001

90

2011 2021 2011

2001

2001 25 29
2021

Figure 9 Simulation results for simulating 30 years starting from 1991 
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As we consider the year  not to be an appropriate base year, due to its 
exceptionally low fertility rates, we project fertility rates for the years  and 
again using 1991 instead of  as the base year. The results are depicted in Figure 9. 
The shape of the age–specific fertility rate as projected by our simulations for 2011 and 

 is rather similar to the corresponding rates postulated by Statistik Austria with one 
exception. Fertility rates at higher ages (above age 40 ) are projected to be lower in our 
simulations as compared to the assumptions underlying the projections by Statistik Austria.  

2001
2011 2021

2001

2021

6. Conclusions
As recently shown by various authors (Kohler et al. 2002, Bernardi 2003), social learning 
and social influence play an increasing role in demographic explanations of observed 
family formation patterns in contemporary Europe. The increasing inclusion of social 
interaction in the demographic theoretical framework however matches with a relatively 
unrealistic model of the mechanisms that underlie those social interactions.  

We propose to apply the methodology of agent–based models (ABMs) to study the 
role of social interaction for explaining observed demographic patterns. Such models allow 
“thought experiments that explore plausible mechanisms that may underlie observed 
patterns” (Macy and Miller 2002, p.147). Different from micro or macro simulations, 
ABMs provide a theoretical bridge between the micro and macro level. The dynamic 
bottom–up approach of ABMs—to explain global patterns by simple local interactions—is 
particularly useful when aiming to explain trends in fertility timing and quantum over the 
last decades.  

In this paper we have presented an ABM on the transition to parenthood, focusing 
on the role of social interaction and providing an endogenous formation of the social 
network. Calibrating our model to Austrian data, we have shown that our model captures 
the observed changes in the timing and quantum of fertility over the last three decades to a 
high degree. One should keep in mind that the model is not intended to explain the pattern 
of age–specific fertility in general but to capture the cause and the extent to which this 
pattern changes over time. We then applied our model to forecast age–specific fertility 
rates for the next two decades. Our framework differs from common practice in population 
forecasts that either rely on extrapolations of past trends or expert opinions. Instead, we 
propose a causal model that allows us to project demographic behavior.  

The next step is to apply our model to different European countries and test its 
validity. Within the framework of our ABM we can experiment with alternative 
mechanisms that may underlie the timing and quantum of fertility in different social 
environments. The exploration of plausible mechanisms that underlie observed patterns is 
the main challenge confronting demographers as they propose efficient explanations of 
past trends and provide reliable projections of future demographic developments. To 
demonstrate the feasibility of such an approach by applying it to the topic of the transition 
to parenthood has been the main aim of the current paper.  
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